Plant Molecular Biology

, Volume 80, Issue 4–5, pp 477–488 | Cite as

Functional characterization of the recombinant HIV-neutralizing monoclonal antibody 2F5 produced in maize seeds

  • M. Sabalza
  • L. Madeira
  • C. van Dolleweerd
  • J. K. Ma
  • T. Capell
  • P. Christou


Monoclonal antibodies (mAbs) that neutralize human immunodeficiency virus (HIV) can be used as microbicides to help prevent the spread of HIV in human populations. As an industry standard, HIV-neutralizing mAbs are produced as recombinant proteins in mammalian cells, but the high manufacturing costs and limited capacity reduce the ability of target populations in developing countries to gain access to these potentially life-saving medicines. Plants offer a more cost-effective and deployable production platform because they can be grown inexpensively and on a large scale in the region where the products are required. Here we show that the maize-derived HIV-neutralizing mAb 2F5 is assembled correctly in planta and binds to its antigen with the same affinity as 2F5 produced in mammalian cells. Although 2F5 has been produced at high levels in non-plant platforms, the yield in maize seeds is lower than previously achieved with another HIV-neutralizing mAb, 2G12. This suggests that the intrinsic properties of the antibody (e.g. sensitivity to specific proteases) and the environment provided by the production host (e.g. the relative abundance of different proteases, potential transgene silencing) may combine to limit the accumulation of some antibodies on a case-by-case basis.


Anti-HIV monoclonal antibodies Microbicides Molecular pharming Maize seeds 



This work was supported by European Union Framework 6 Program—The Pharma-Planta Integrated Project Grant LSH-2002—1.2.5–2; Center CONSOLIDER, Ministerio de Educación y Ciencia, Spain (MICINN); COST ACTION FA0804 Molecular Farming: plants as a production platform for high value proteins.


  1. Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327CrossRefGoogle Scholar
  2. Armbruster C, Stiegler GM, Vcelar BA, Jäger W, Michael NL, Vetter N, Katinger HW (2002) A phase I trial with two human monoclonal antibodies (hMAb 2F5, 2G12) against HIV-1. AIDS 16:227–233PubMedCrossRefGoogle Scholar
  3. Armbruster C, Stiegler GM, Vcelar BA, Jäger W, Köller U, Jilch R, Ammann CG, Pruenster M, Stoiber H, Katinger HWD (2004) Passive immunization with the anti-HIV-1 human monoclonal antibody (hMAb) 4E10 and the hMAb combination 4E10/2F5/2G12. J Antimicrob Chemother 54:915–920PubMedCrossRefGoogle Scholar
  4. Baba TW, Liska V, Hofmann-Lehmann R, Vlasak J, Xu WD, Ayehunie S, Cavacini LA, Posner MR, Katinger H, Stiegler G, Bernacky BJ, Rizvi TA, Schmidt R, Hill LR, Keeling ME, Lu YC, Wright JE, Chou TC, Ruprecht RM (2000) Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med 6:200–206PubMedCrossRefGoogle Scholar
  5. Binley JM, Lybarger EA, Crooks ET, Seaman MS, Gray E, Davis KL, Decker JM, Wycuff D, Harris L, Hawkins N, Wood B, Nathe C, Richman D, Tomaras GD, Bibollet-Ruche F, Robinson JE, Morris L, Shaw GM, Montefiori DC, Mascola JR (2008) Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J Virol 82:11651–11668PubMedCrossRefGoogle Scholar
  6. Boyd M, Gustafson K, McMahon J, Shoemaker R, O’Keefe B, Mori T, Gulakowski R, Wu L, Rivera M, Laurencot C, Currens M, Cardellina J, Buckheit R Jr, Nara P Jr, Pannell L, Sowder R Jr, Henderson L (1997) Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 41:1521–1530PubMedGoogle Scholar
  7. Burton DR, Weiss RA (2010) A boost for HIV vaccine design. Science 329:770–773PubMedCrossRefGoogle Scholar
  8. Cardoso RMF, Zwick MB, Stanfield RL, Kunert R, Binley JM, Katinger H, Burton DR, Wilson IA (2005) Broadly neutralizing anti-HIV antibody, 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Immunity 22:163–173PubMedCrossRefGoogle Scholar
  9. Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226PubMedCrossRefGoogle Scholar
  10. Desai P, Shrivastava N, Padh H (2010) Production of heterologous protein in plants: strategies for optimal expression. Biotechnol Adv 28:427–435PubMedCrossRefGoogle Scholar
  11. Dey B, Lerner DL, Lusso P, Boyd MR, Elder J, Berger EA (2000) Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. J Virol 74:4562–4569PubMedCrossRefGoogle Scholar
  12. Dolgin E (2010) Lack of uptake threatens promise of HIV vaccines. Nat Med 16:937PubMedCrossRefGoogle Scholar
  13. Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869–880PubMedCrossRefGoogle Scholar
  14. Drake PMW, Barbi T, Sexton A, McGowan E, Stadlmann J, Navarre C, Paul MJ, Ma JKC (2009) Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco. FASEB J 23:3581–3589PubMedCrossRefGoogle Scholar
  15. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349PubMedCrossRefGoogle Scholar
  16. Fauci AS, Johnston MI, Dieffenbach CW, Burton DR, Hammer SM, Hoxie JA, Martin M, Overbaugh J, Watkins DI, Mahmoud A, Greene WC (2008) HIV vaccine research: the way forward. Science 321:530–532PubMedCrossRefGoogle Scholar
  17. Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biophramaceuticals. Curr Opin Plant Biotechnol 7:152–158CrossRefGoogle Scholar
  18. Fischer R, Schillberg S, Hellwig S, Twyman RM, Drossard J (2012) GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol Adv 30:434–439PubMedCrossRefGoogle Scholar
  19. Floss DM, Sack M, Stadlmann J, Rademacher T, Scheller J, Stoger E, Fischer R, Conrad U (2008) Biochemical and functional characterization of anti-HIV antibody–ELP fusion proteins from transgenic plants. Plant Biotechnol J 6:379–391PubMedCrossRefGoogle Scholar
  20. Gasser B, Maurer M, Gach J, Kunert R, Mattanovich D (2006) Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnol Bioeng 94:353–361PubMedCrossRefGoogle Scholar
  21. Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22:1415–1422PubMedCrossRefGoogle Scholar
  22. Hessell AJ, Rakasz EG, Tehrani DM, Huber M, Weisgrau KL, Landucci G, Forthal DN, Koff WC, Poignard P, Watkins DI, Burton DR (2010) Broadly neutralizing monoclonal antibodies 2F5 and 4E10 directed against the human immunodeficiency virus type 1 gp41 membrane-proximal external region protect against mucosal challenge by simian-human immunodeficiency virus SHIVBa-L. J Virol 84:1302–1313PubMedCrossRefGoogle Scholar
  23. Hofmann-Lehmann R, Vlasak RJ, Rasmussen BA, Smith TA, Baba VW, Liska F, Ferrantelli D, Montefiori C, McClure HM, Anderson DC, Bernacky BJ, Rizvi TA, Schmidt R, Hill LR, Keeling ME, Katinger H, Stiegler G, Cavacini LA, Posner MR, Chou TC, Andersen J, Ruprecht RM (2001) Postnatal passive immunization of neonatal macaques with a triple combination of human monoclonal antibodies against oral simian-human immunodeficiency virus challenge. J Virol 75:7470–7480PubMedCrossRefGoogle Scholar
  24. Huang J, Dong X, Liu Z, Qin L, Chen YH (2002) A predefined epitope-specific monoclonal antibody recognizes ELDEWA-epitope just presenting on gp41 of HIV-1 O clade. Immunol Lett 84:205–209PubMedCrossRefGoogle Scholar
  25. Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126:930–938PubMedCrossRefGoogle Scholar
  26. Joos B, Trkola A, Kuster H, Aceto L, Fischer M, Stiegler G, Armbruster C, Vcelar B, Katinger H, Günthard FH (2006) Long-term multiple-dose pharmacokinetics of human monoclonal antibodies (MAbs) against human immunodeficiency virus type 1 envelope gp120 (MAb 2G12) and gp41 (MAbs 4E10 and 2F5). J Antimicrob Chemother 50:1773–1779CrossRefGoogle Scholar
  27. Khan I, Twyman RM, Arcalis E, Stoger E (2012) Using storage organelles for the accumulation and encapsulation of recombinant proteins. Biotechnol J (online)Google Scholar
  28. Kohli A, Gonzalez-Melendi P, Abranches R, Capell T, Stoger E, Christou P (2006) The quest to understand the basis and mechanisms that control expression of introduced transgenes in crop plants. Plant Signal Behav 1:185–195PubMedCrossRefGoogle Scholar
  29. Kunert R, Rüker F, Katinger H (1998) Molecular characterization of five neutralizing anti-HIV type 1 antibodies: identification of nonconventional D segments in the human monoclonal antibodies 2G12 and 2F5. AIDS Res Hum Retroviruses 14:1115–1128PubMedCrossRefGoogle Scholar
  30. Kunert R, Steinfellner W, Purtscher M, Assadian A, Katinger H (2000) Stable recombinant expression of the anti HIV-1 monoclonal antibody 2F5 after IgG3/IgG1 subclass switch in CHO cells. Biotechnol Bioeng 67:97–103PubMedCrossRefGoogle Scholar
  31. Lombardi R, Villani ME, Di Carli M, Brunetti P, Benvenuto E, Donini M (2010) Optimisation of the purification process of a tumourtargeting antibody produced in N. benthamiana using vacuum agroinfiltration. Transgeni Res 19:1083–1097CrossRefGoogle Scholar
  32. Ma JKC, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805PubMedCrossRefGoogle Scholar
  33. Manrique A, Rusert P, Joos B, Fischer M, Kuster H, Leemann C, Niederöst B, Weber R, Stiegle G, Katinger H, Günthard HF, Trkola A (2007) In vivo and In vitro escape from neutralizing antibodies 2G12, 2F5 and 4E10. J Virol 16:8793–8808CrossRefGoogle Scholar
  34. Mascola JR, Lewis MG, Stiegler G, Harris D, VanCott TC, Hayes D, Louder MK, Brown CR, Sapan CV, Frankel SS, Lu YC, Robb ML, Katinger H, Birx DL (1999) Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J Virol 73:4009–4018PubMedGoogle Scholar
  35. Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB, Hanson CE, Beary H, Hayes D, Frankel SS, Birx DL, Lewis MG (2000) Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med 6:207–210PubMedCrossRefGoogle Scholar
  36. Mehandru S, Wrin T, Galovich J, Stiegler G, Vcelar B, Hurley A, Hogan C, Vasan S, Katinger H, Petropoulos CJ, Markowitz M (2004) Neutralization profiles of newy transmitted human immunodeficiency virus type 1 by monoclonal antibodies 2G12, 2F5 and 4E10. J Virol 78:14039–14042PubMedCrossRefGoogle Scholar
  37. Muster T, Steindl F, Purtscher M, Trkola A, Klima A, Himmler H, Ruker F, Katinger H (1993) A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 67:6642–6647PubMedGoogle Scholar
  38. Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. PNAS USA 106:7762–7767PubMedCrossRefGoogle Scholar
  39. Naqvi S, Ramessar K, Farré G, Sabalza M, Miralpeix B, Twyman RM, Capell T, Zhu C, Christou P (2011) High-value products from transgenic maize. Biotechnol Adv 29:40–53PubMedCrossRefGoogle Scholar
  40. Nicholson L, Gonzalez-Melendi P, van Dolleweerd C, Tuck H, Ma JKC, Fischer R, Christou P, Stoger E (2005) A recombinant multimeric immunoglobulin expressed in rice shows assembly-dependent subcellular localization in endosperm cells. Plant Biotechnol J 3:115–127PubMedCrossRefGoogle Scholar
  41. Parren PW, Burton DR (2001) The antiviral activity of antibodies in vitro and in vivo. A definitive review on how antibodies inhibit viral infection, HIV-1 infection in particular. Adv Immunol 77:195–262PubMedCrossRefGoogle Scholar
  42. Peremarti A, Twyman RM, Gómez-Galera S, Naqvi S, Farré G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K, Christou P, Zhu C, Bassie L, Capell T (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73:363–378PubMedCrossRefGoogle Scholar
  43. Platis D, Drossard J, Fischer R, Ma JKC, Labrou NE (2008) New downstream processing strategy for the purification of monoclonal antibodies from transgenic tobacco plants. J Chromatogr A 1211:80–89PubMedCrossRefGoogle Scholar
  44. Rademacher T, Sack M, Arcalis E, Stadlmann J, Balzer S, Altmann F, Quendler H, Stiegler G, Kunert R, Fischer R, Stoger E (2008) Recombinant antibody 2G12 produced in maize endosperm efficiently neutralize HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol J 6:189–201PubMedCrossRefGoogle Scholar
  45. Radomsky ML, Whaley KJ, Cone RA, Saltzman WM (1992) Controlled vaginal delivery of antibodies in the mouse. Biol Reprod 47:133–140PubMedCrossRefGoogle Scholar
  46. Ramessar K, Capell T, Christou P (2008a) Molecular pharming in cereal crops. Phytochem Rev 7:579–592CrossRefGoogle Scholar
  47. Ramessar K, Rademacher T, Sack M, Stadlmann J, Platis D, Stiegler G, Labrou N, Altmann F, Ma JKC, Stoger E, Capell T, Christou P (2008b) Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. PNAS USA 105:3727–3732PubMedCrossRefGoogle Scholar
  48. Ramessar K, Sabalza M, Capell T, Christou P (2008c) Maize plants: an ideal production platform for effective and safe molecular pharming. Plant Sci 174:409–419CrossRefGoogle Scholar
  49. Ramessar K, Sabalza M, Miralpeix B, Capell T, Christou P (2010) Can microbicides turn the tide against HIV? Curr Pharm Des 16:468–485PubMedCrossRefGoogle Scholar
  50. Sack M, Paetz A, Kunert R, Bomble M, Hesse F, Stiegler G, Fischer R, Katinger H, Stoger E, Rademacher T (2007) Functional analysis of the broadly neutralizing human anti- HIV-1 antibody 2F5 produced in transgenic BY-2 suspension cultures. FASEB J 21:1655–1664CrossRefGoogle Scholar
  51. Sainsbury F, Lomonossoff GP (2008) Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol 148:1212–1218PubMedCrossRefGoogle Scholar
  52. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  53. Schillberg S, Zimmermann S, Voss A, Fischer R (1999) Apoplastic and cytosolic expression of full-size antibodies and antibody fragments in Nicotiana tabacum. Transgenic Res 8:255–263PubMedCrossRefGoogle Scholar
  54. Sexton A, Drake PM, Mahmood N, Harman SJ, Shattock RJ, Ma JKC (2009) Transgenic plant production of Cyanovirin-N, an HIV microbicide. FASEB J 20:356–368Google Scholar
  55. Shattock RJ, Moore JP (2003) Inhibiting sexual transmission of HIV-1 infection. Nat Rev Microbiol 1:a007385CrossRefGoogle Scholar
  56. Shattock RJ, Rosenberg Z (2012) Microbicides: topical prevention against HIV. Cold Spring Harb Perspect Med 2:1–17Google Scholar
  57. Shen R, Drelichman ER, Bimczok D, Ochsenbauer C, Kappes JC, Cannon JA, Tudor D, Bomsel M, Smythies LE, Smith PD (2010) GP41-specific antibody blocks cell-free HIV type 1 transcytosis through human rectal mucosa and model colonic epithelium. J Immunol 184:3648–3655PubMedCrossRefGoogle Scholar
  58. Stiegler G, Armbruster C, Vcelar B, Stoiber H, Kunert R, Michael NL, Jagodzinski LL, Ammann C, Jager W, Jacobson J, Vetter N, Katinger H (2002) Antiviral activity of the neutralizing antibodies 2F5 and 2G12 in asymptomatic HIV-1-infected humans: a phase I evaluation. AIDS 16:2019–2025PubMedCrossRefGoogle Scholar
  59. Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42:583–590PubMedCrossRefGoogle Scholar
  60. Stoger E, Sack M, Perrin Y, Vaquero C, Torres E, Twyman RM, Christou P, Fischer R (2002) Practical considerations for pharmaceutical antibody production in different crop systems. Mol Breed 9:149–152CrossRefGoogle Scholar
  61. Stoger E, Ma JKC, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173PubMedCrossRefGoogle Scholar
  62. Strasser R, Stadlmann J, Schahs M, Stiegler G, Quendler H, Mach L, Glossl J, Weterings K, Pabst M, Steinkellner H (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6:392–402PubMedCrossRefGoogle Scholar
  63. Torres E, Vaquero C, Nicholson L, Sack M, Stoger E, Drossard J, Christou P, Fischer R, Perrin Y (1999) Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res 8:441–449PubMedCrossRefGoogle Scholar
  64. UNAIDS (2010) Fact sheet: the global AIDS epidemic. UNAIDS, GenevaGoogle Scholar
  65. UNAIDS (2011) Report on the global AIDS epidemic, 2011.
  66. Veazey RS, Shattock RJ, Pope M, Kirijan JC, Jones J, Hu Q, Ketas T, Marx PA, Klasse PJ, Burton DR, Moore JP (2003) Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat Med 9:343–346PubMedCrossRefGoogle Scholar
  67. Villani ME, Morgun B, Brunetti P, Marusic C, Lombardi R, Pisoni I, Bacci C, Desiderio A, Benvenuto E, Donini M (2008) Plant pharming of a full-sized, tumour-targeting antibody using different expression strategies. Plant Biotechnol J 7:59–72PubMedCrossRefGoogle Scholar
  68. Walker LM, Burton DR (2010) Rational antibody-based HIV-1 vaccine design: current approaches and future directions. Curr Opin Immunol 22:358–366PubMedCrossRefGoogle Scholar
  69. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, Wang SK, Ramos A, Chan-Hui PY, Moyle M, Mitcham JL, Hammond PW, Olsen OA, Phung P, Fling S, Wong CH, Phogat S, Wrin T, Simek MD, Principal Investigators PG, Koff WC, Wilson IA, Burton DR, Poignard P (2011) Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477:466–470PubMedCrossRefGoogle Scholar
  70. Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. PNAS USA 105:18232–18237PubMedCrossRefGoogle Scholar
  71. Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM, Moore JP, Stiegler G, Katinger H, Burton DR, Parre PW (2001) Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol 75:10892–10905PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Sabalza
    • 1
  • L. Madeira
    • 2
  • C. van Dolleweerd
    • 2
  • J. K. Ma
    • 2
  • T. Capell
    • 1
  • P. Christou
    • 1
    • 3
  1. 1.Departament de Produccio Vegetal I Ciencia Forestal (PVCF)Universitat de Lleida-Agrotecnio CenterLleidaSpain
  2. 2.Molecular Immunology Unit, Division of Clinical SciencesSt. George’s University of LondonLondonUK
  3. 3.Institucio Catalana de Recerca I Estudis Avancats (ICREA)BarcelonaSpain

Personalised recommendations