Plant Molecular Biology

, Volume 80, Issue 4–5, pp 443–460 | Cite as

Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during Cotton leafroll dwarf polerovirus (CLRDV) infection

  • Elisson Romanel
  • Tatiane F. Silva
  • Régis L. Corrêa
  • Laurent Farinelli
  • Jennifer S. Hawkins
  • Carlos E. G. Schrago
  • Maite F. S. Vaslin


Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.


microRNA Small RNA Transposon Cotton Gossypium hirsutum Cotton leafroll dwarf virus CLRDV and Luteoviridae 



We thank the Brazilian sponsoring agency CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, 150639/2010-4-PDJ) for financial support to CEGS and a postdoctoral fellowship to ER, FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) for financial support to MFSV through APQ1 E26/110.264/2010 and Pensa Rio E-26/110.324/2010, and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the studentship to TFS. This work is part of the PhD thesis written by TFS for the Programa de Biotecnologia Vegetal from Universidade Federal do Rio de Janeiro, Brazil. We also thank Magne Osteras, Cécile Deluen, Christelle Barras, Elisabeth Dieterle and Patricia O. Hernandez from Fasteris Co. for technical assistance with deep sequencing and Tereza Galvão Carvalho from UFRJ for helping with plant care and RNA extractions. We thank Dr. Rogério Margis from UFRGS for exciting and helpful discussions and Dr. Marie-Anne and her students at USP for stimulating discussions and help with the bioinformatics programs used to study TEs.

Supplementary material

11103_2012_9959_MOESM1_ESM.ppt (162 kb)
Figure S1: The percentage of 5′ nt identities of Gossypium hirsutum small RNA (sRNA) in uninfected (UIL) and infected (IL) libraries. The percentage of 5’ nt identities among the 18-26 nt sRNA classes from the unique (A and B) and redundant (C and D) data are shown. sRNAs sequences (reads) beginning with A (red), C (orange), G (yellow), and U (green) are indicated for each size class. A and C – The data from the uninfected library. B and D – The data from the infected library. (PPT 162 kb)
11103_2012_9959_MOESM2_ESM.ppt (220 kb)
Figure S2: Predicted stem-loop hairpin secondary structures of four new miRNAs identified in conserved cotton miRNAs families. Stem-loop structures of the novel conserved miRNAs Ghr-miR172f (A) and Ghr-miR319a (B) deduced from the Gossypium raimondii genome. Stem-loop structures of the novel conserved miRNAs Ghr-miR393c (C) and Ghr-miR3476a (D) deduced from G. hirsutum ESTs. The red lines indicate the position of the mature miRNA sequences. The pre-miRNA sequences used for Ghr-miR172, Ghr-miR319, Ghr-miR393 and Ghr-miR3476 were gnl|ti|2101390498 FITC127369.g1, gnl|ti|2102160818 FONU88474.g1, TA29056_3635 and DW497660, respectively. (PPT 223 kb)
11103_2012_9959_MOESM3_ESM.ppt (276 kb)
Figure S3: Effects of CLRDV infection on cotton 20, 22 and 24-nt miRNA expression. Comparative analysis of the cotton 20, 22 and 24-nt miRNAs families identified in the uninfected (UIL) and CLRDV-infected (IL) deep-sequencing libraries. Histograms represent the percentage of miRNA families. Only miRNA families with more than four reads in at least one library and containing reads in both libraries were analyzed. (PPT 276 kb)
11103_2012_9959_MOESM4_ESM.ppt (1.1 mb)
Figure S4: Determining specificity of RT-qPCR TE-specific primers. Melting curves of the retrotransposons from Gossypium hirsutum Gypsy 2, Copia 1 and Copia 2 showing the amplification of a single product and Gypsy 1 showing multiple products after RT-qPCR analysis using SYBRGreen. (PPT 1080 kb)
11103_2012_9959_MOESM5_ESM.doc (35 kb)
Supplementary material 5 (DOC 35 kb)
11103_2012_9959_MOESM6_ESM.doc (200 kb)
Supplementary material 6 (DOC 220 kb)
11103_2012_9959_MOESM7_ESM.xls (208 kb)
Supplementary material 7 (XLS 208 kb)
11103_2012_9959_MOESM8_ESM.doc (56 kb)
Supplementary material 8 (DOC 56 kb)
11103_2012_9959_MOESM9_ESM.doc (42 kb)
Supplementary material 9 (DOC 41 kb)


  1. Abdurakhmonov IY, Devor EJ, Buriev ZT, Huang L, Makamov A, Shermatov SE, Bozorov T, Kushanov FN, Mavlonov GT, Abdukarimov A (2008) Small RNA regulation of ovule development in the cotton plant, G. hirsutum L. BMC Plant Biol 8:93Google Scholar
  2. Allen E, Howell MD (2010) miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Semin Cell Dev Biol 21:798–804PubMedCrossRefGoogle Scholar
  3. Allen E, Xie ZX, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221PubMedCrossRefGoogle Scholar
  4. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  5. Amin I, Patil BL, Briddon RW, Mansoor S, Fauquet CM (2011) A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol J 8:143Google Scholar
  6. Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC (2005) Cloning and characterization of micro-RNAs from moss. Plant J 43:837–848PubMedCrossRefGoogle Scholar
  7. Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa MF, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49Google Scholar
  8. Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673PubMedCrossRefGoogle Scholar
  9. Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13:343–349PubMedCrossRefGoogle Scholar
  10. Barakat A, Wall K, Leebens-Mack J, Wang YJ, Carlson JE, dePamphilis CW (2007) Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J 51:991–1003PubMedCrossRefGoogle Scholar
  11. Barozai MYK, Irfan M, Yousaf R, Ali I, Qaisar U, Maqbool A, Zahoor M, Rashid B, Hussnain T, Riazuddin S (2008) Identification of micro-RNAs in cotton. Plant Physiol Biochem 46:739–751CrossRefGoogle Scholar
  12. Baumberger N, Tsai CH, Lie M, Havecker E, Baulcombe DC (2007) The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr Biol 17:1609–1614PubMedCrossRefGoogle Scholar
  13. Bazzini AA, Hopp HE, Beachy RN, Asurmendi S (2007) Infection and coaccumulation of Tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc Nat Acad Sci USA 104:12157–12162PubMedCrossRefGoogle Scholar
  14. Bazzini AA, Almasia NI, Manacorda CA, Mongelli VC, Conti G, Maroniche GA, Rodriguez MC, Distefano AJ, Hopp HE, del Vas M, Asurmendi S (2009) Virus infection elevates transcriptional activity of miR164a promoter in plants. BMC Plant Biol 9:152Google Scholar
  15. Beasley JO (1941) Hybridization, cytology, and polyploidy of Gossypium. Chron Bot 6:394–395Google Scholar
  16. Bond DM, Finnegan EJ (2007) Passing the message on: inheritance of epigenetic traits. Trends Plant Sci 12:211–216PubMedCrossRefGoogle Scholar
  17. Borevitz JO, Liang D, Plouffe D, Chang HS, Zhu T, Weigel D, Berry CC, Winzeler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523PubMedCrossRefGoogle Scholar
  18. Borsani O, Zhu JH, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291PubMedCrossRefGoogle Scholar
  19. Bortolamiol D, Pazhouhandeh M, Marrocco K, Genschik P, Ziegler-Graff V (2007) The Polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr Biol 17:1615–1621PubMedCrossRefGoogle Scholar
  20. Boyko A, Kathiria P, Zemp FJ, Yao Y, Pogribny I, Kovalchuk I (2007) Transgenerational changes in the genome stability and methylation in pathogen-infected plants (Virus-induced plant genome instability). Nucleic Acids Res 35:1714–1725PubMedCrossRefGoogle Scholar
  21. Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins F, Jr., Kovalchuk I (2010) Transgenerational Adaptation of Arabidopsis to Stress Requires DNA Methylation and the Function of Dicer-Like Proteins. Plos One 3;5(3):e9514Google Scholar
  22. Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10:141–148PubMedCrossRefGoogle Scholar
  23. Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10:64Google Scholar
  24. Cauquil J (1977) Studies on a cotton plant disease of viral origin—blue disease. Coton et Fibres Tropicales 32:259Google Scholar
  25. Chan SWL, Zilberman D, Xie ZX, Johansen LK, Carrington JC, Jacobsen SE (2004) RNA silencing genes control de novo DNA methylation. Science 303:1336PubMedCrossRefGoogle Scholar
  26. Chan SWL, Henderson IR, Zhang X, Shah G, Chien JSC, Jacobsen SE (2006a) RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in Arabidopsis. PLoS Genet 2:791–797Google Scholar
  27. Chan SWL, Zhang X, Bernatavichute YV, Jacobsen SE (2006b) Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLoS Biol 4:1923–1933Google Scholar
  28. Chen XM (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44PubMedCrossRefGoogle Scholar
  29. Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Nat Acad Sci USA 107:15269–15274PubMedCrossRefGoogle Scholar
  30. Cho SH, Addo-Quaye C, Coruh C, Arif MA, Ma ZR, Frank W, Axtell MJ (2008) Physcomitrella patens DCL3 Is Required for 22-24 nt siRNA Accumulation, Suppression of Retrotransposon-Derived Transcripts, and Normal Development. Plos Genetics 4(12):e1000314Google Scholar
  31. Correa RL, Silva TF, Simoes-Araujo JL, Barroso PAV, Vidal MS, Vaslin MFS (2005) Molecular characterization of a virus from the family Luteoviridae associated with cotton blue disease. Arch Virol 150:1357–1367PubMedCrossRefGoogle Scholar
  32. Cronn RC, Small RL, Haselkorn T, Wendel JF (2002) Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot 89:707–725PubMedCrossRefGoogle Scholar
  33. Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17:997–1003PubMedCrossRefGoogle Scholar
  34. Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442PubMedCrossRefGoogle Scholar
  35. De Bodt S, Maere S, Van de Peer Y (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591–597PubMedCrossRefGoogle Scholar
  36. Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214PubMedCrossRefGoogle Scholar
  37. Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520PubMedCrossRefGoogle Scholar
  38. Dunoyer P, Voinnet O (2005) The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 8:415–423PubMedCrossRefGoogle Scholar
  39. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes. Plos One 14;2(2):e219Google Scholar
  40. Feng JL, Liu X, Lai LY, Chen JS (2009) Spatio-temporal expression of miRNAs in tomato tissues upon Cucumber mosaic virus and Tomato aspermy virus infections. Acta Biochim Biophys Sin 43:258–266CrossRefGoogle Scholar
  41. Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2:108–165Google Scholar
  42. Fusaro AF, Correa RL, Nakasugi K, Jackson C, Kawchuk L, Vaslin MF, Waterhouse PM (2012) The enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation. Virology 426:178–187PubMedCrossRefGoogle Scholar
  43. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158PubMedCrossRefGoogle Scholar
  44. Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen XM, Wang XJ, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Nat Acad Sci USA 106:17835–17840PubMedCrossRefGoogle Scholar
  45. Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261PubMedCrossRefGoogle Scholar
  46. Hawkins JS, Hu G, Rapp RA, Grafenberg JL, Wendel JF (2008) Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome 51:11–18PubMedCrossRefGoogle Scholar
  47. Hawkins JS, Proulx SR, Rapp RA, Wendel JF (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Nat Acad Sci USA 106:17811–17816PubMedCrossRefGoogle Scholar
  48. He XF, Fang YY, Feng L, Guo HS (2008) Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 582:2445–2452PubMedCrossRefGoogle Scholar
  49. Hu G, Hawkins JS, Grover CE, Wendel JF (2010) The history and disposition of transposable elements in polyploid Gossypium. Genome 53:599–607PubMedCrossRefGoogle Scholar
  50. Hu Q, Hollunder J, Niehl A, Korner CJ, Gereige D, Windels D, Arnold A, Kuiper M, Vazquez F, Pooggin M, Heinlein M (2011) Specific Impact of Tobamovirus Infection on the Arabidopsis Small RNA Profile. Plos One 6(5):e19549Google Scholar
  51. Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119PubMedCrossRefGoogle Scholar
  52. Jay F, Wang Y, Yu A, Taconnat L, Pelletier S, Colot V, Renou JP, Voinnet O (2011) Misregulation of AUXIN RESPONSE FACTOR 8 Underlies the Developmental Abnormalities Caused by Three Distinct Viral Silencing Suppressors in Arabidopsis. Plos Pathogens 7(5):e1002035Google Scholar
  53. Johns MA, Mottinger J, Freeling M (1985) A low copy number, copia-like transposon in maize. EMBO J 4:1093–1101PubMedGoogle Scholar
  54. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799PubMedCrossRefGoogle Scholar
  55. Kasschau KD, Xie ZX, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217PubMedCrossRefGoogle Scholar
  56. Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5:479–493CrossRefGoogle Scholar
  57. Katiyar-Agarwal S, Jin HL (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246PubMedCrossRefGoogle Scholar
  58. Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21:3123–3134PubMedCrossRefGoogle Scholar
  59. Klevebring D, Street NR, Fahlgren N, Kasschau KD, Carrington JC, Lundeberg J, Jansson S (2009) Genome-wide profiling of Populus small RNAs. BMC Genomics 20;10:620Google Scholar
  60. Kwak PB, Wang QQ, Chen XS, Qiu CX, Yang ZM (2009) Enrichment of a set of microRNAs during the cotton fiber development. BMC Genomics 29;10:457Google Scholar
  61. Lang Q, Jin C, Lai L, Feng J, Chen S, Chen J (2011) Tobacco microRNAs prediction and their expression infected with Cucumber mosaic virus and Potato virus X. Mol Biol Rep 38:1523–1531PubMedCrossRefGoogle Scholar
  62. Laubinger S, Zeller G, Henz SR, Buechel S, Sachsenberg T, Wang J-W, Raetsch G, Weigel D (2010) Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome. Proc Nat Acad Sci USA 107:17466–17473PubMedCrossRefGoogle Scholar
  63. Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476PubMedCrossRefGoogle Scholar
  64. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536PubMedCrossRefGoogle Scholar
  65. Lu SF, Sun YH, Shi R, Clark C, Li LG, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203PubMedCrossRefGoogle Scholar
  66. Lu S, Sun Y-H, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151PubMedCrossRefGoogle Scholar
  67. Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36PubMedCrossRefGoogle Scholar
  68. Mayo MA, ZieglerGraff V (1996) Molecular biology of luteoviruses. Adv Virus Res 46:413–460PubMedCrossRefGoogle Scholar
  69. McCarthy EM, McDonald JF (2003) LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19:362–367PubMedCrossRefGoogle Scholar
  70. Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127PubMedCrossRefGoogle Scholar
  71. Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049PubMedCrossRefGoogle Scholar
  72. Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447:1126–1129PubMedCrossRefGoogle Scholar
  73. Montgomery TA, Howell MD, Cuperus JT, Li DW, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141PubMedCrossRefGoogle Scholar
  74. Mottinger JP, Johns MA, Freeling M (1984) Mutations of the ADH1 gene in maize following infection with Barley stripe mosaic-virus. Mol Gen Genet 195:367–369PubMedCrossRefGoogle Scholar
  75. Naqvi AR, Haq QMR, Mukherjee SK (2010) MicroRNA profiling of Tomato leaf curl new delhi virus (ToLCNDV) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol J 7:281Google Scholar
  76. Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929–2945PubMedCrossRefGoogle Scholar
  77. Pang M, Woodward AW, Agarwal V, Guan X, Ha M, Ramachandran V, Chen X, Triplett BA, Stelly DM, Chen ZJ (2009) Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.). Genome Biol 10(11):R122Google Scholar
  78. Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant Journal 62:960–976PubMedGoogle Scholar
  79. Pfeffer S, Dunoyer P, Heim F, Richards KE, Jonard G, Ziegler-Graff V (2002) P0 of beet Western yellows virus is a suppressor of posttranscriptional gene silencing. J Virol 76:6815–6824PubMedCrossRefGoogle Scholar
  80. Qiu CX, Xie FL, Zhu YY, Guo K, Huang SQ, Nie L, Yang ZM (2007) Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. Gene 395:49–61PubMedCrossRefGoogle Scholar
  81. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425PubMedCrossRefGoogle Scholar
  82. Ruan M-B, Zhao Y-T, Meng Z-H, Wang X-J, Yang W-C (2009) Conserved miRNA analysis in Gossypium hirsutum through small RNA sequencing. Genomics 94:263–268PubMedCrossRefGoogle Scholar
  83. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510PubMedCrossRefGoogle Scholar
  84. Ruiz–Ruiz S, Navarro B, Gisel A, Pena L, Navarro L, Moreno P, Di Serio F, Flores R (2011) Citrus tristeza virus infection induces the accumulation of viral small RNAs (21–24-nt) mapping preferentially at the 3′-terminal region of the genomic RNA and affects the host small RNA profile. Plant Mol Biol 75:607–619PubMedCrossRefGoogle Scholar
  85. Seelanan T, Schnabel A, Wendel JF (1997) Congruence and consensus in the cotton tribe (Malvaceae). Syst Bot 22:259–290CrossRefGoogle Scholar
  86. Silva TF, Correa RL, Castilho Y, Silvie P, Belot JL, Vaslin MFS (2008) Widespread distribution and a new recombinant species of Brazilian virus associated with cotton blue disease. Virol J 5:123Google Scholar
  87. Silva TF, Romanel EAC, Andrade RRS, Farinelli L, Osteras M, Deluen C, Correa RL, Schrago CEG, Vaslin MFS (2011) Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus. BMC Mole Biol 12:40Google Scholar
  88. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019PubMedCrossRefGoogle Scholar
  89. Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MPS, Moulton V, Dalmay T (2008) High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9:593Google Scholar
  90. Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49:493–500PubMedCrossRefGoogle Scholar
  91. Tanurdzic M, Vaughn MW, Jiang H, Lee T-J, Slotkin RK, Sosinski B, Thompson WF, Doerge RW, Martienssen RA (2008) Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 6:2880–2895PubMedCrossRefGoogle Scholar
  92. Teixeira FK, Heredia F, Sarazin A, Roudier F, Boccara M, Ciaudo C, Cruaud C, Poulain J, Berdasco M, Fraga MF, Voinnet O, Wincker P, Esteller M, Colot V (2009) A role for RNAi in the selective correction of DNA methylation defects. Science 323:1600–1604PubMedCrossRefGoogle Scholar
  93. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 11(22):4673–4680Google Scholar
  94. Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D (2010) A Collection of Target Mimics for Comprehensive Analysis of MicroRNA Function in Arabidopsis thaliana. Plos Genetics 6(7):e1001031Google Scholar
  95. Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K (2009) The flowering world: a tale of duplications. Trends Plant Sci 14:680–688PubMedCrossRefGoogle Scholar
  96. Varkonyi-Gasic E, Hellens RP (2010) qRT-PCR of Small RNAs. In: KovaIchuk I, Zemp F (eds) Plant epigenetics: methods and protocols, methods in molecular biology vol 631. pp 109–122Google Scholar
  97. Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V, Doerge RW, Martienssen RA (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:1617–1629CrossRefGoogle Scholar
  98. Voinnet O (2008) Post-transcriptional RNA silencing in plant-microbe interactions: a touch of robustness and versatility. Curr Opin Plant Biol 11:464–470PubMedCrossRefGoogle Scholar
  99. Voinnet O (2009) Origin, biogenesis, and activity of plant MicroRNAs. Cell 136:669–687PubMedCrossRefGoogle Scholar
  100. Wada Y, Miyamoto K, Kusano T, Sano H (2004) Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genomics 271:658–666PubMedCrossRefGoogle Scholar
  101. Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186CrossRefGoogle Scholar
  102. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201PubMedCrossRefGoogle Scholar
  103. Zhang B, Wang Q, Wang K, Pan X, Liu F, Guo T, Cobb GP, Anderson TA (2007) Identification of cotton microRNAs and their targets. Gene 397:26–37PubMedCrossRefGoogle Scholar
  104. Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449Google Scholar
  105. Zhang ZH, Yu JY, Li DF, Zhang ZY, Liu FX, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D813PubMedCrossRefGoogle Scholar
  106. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Elisson Romanel
    • 1
  • Tatiane F. Silva
    • 2
  • Régis L. Corrêa
    • 1
  • Laurent Farinelli
    • 3
  • Jennifer S. Hawkins
    • 4
  • Carlos E. G. Schrago
    • 1
  • Maite F. S. Vaslin
    • 2
  1. 1.Departamento de Genética, Instituto de BiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Departamento de Virologia, Instituto de MicrobiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Fasteris SAPlan-les-OuatesSwitzerland
  4. 4.Department of BiologyWest Virginia UniversityMorgantownUSA

Personalised recommendations