Plant Molecular Biology

, Volume 79, Issue 1–2, pp 5–20 | Cite as

Plastid genome evolution in mycoheterotrophic Ericaceae

  • Thomas Braukmann
  • Saša Stefanović


Unlike parasitic plants, which are linked to their hosts directly through haustoria, mycoheterotrophic (MHT) plants derive all or part of their water and nutrients from autothrophs via fungal mycorrhizal intermediaries. Ericaceae, the heather family, are a large and diverse group of plants known to form elaborate symbiotic relationships with mycorrhizal fungi. Using PHYA sequence data, we first investigated relationships among mycoheterotrophic Ericaceae and their close autotrophic relatives. Phylogenetic results suggest a minimum of two independent origins of MHT within this family. Additionally, a comparative investigation of plastid genomes (plastomes) grounded within this phylogenetic framework was conducted using a slot-blot Southern hybridization approach. This survey encompassed numerous lineages of Ericaceae with different life histories and trophic levels, including multiple representatives from mixotrophic Pyroleae and fully heterotrophic Monotropeae and Pterosporeae. Fifty-four probes derived from all categories of protein coding genes typically found within the plastomes of flowering plants were used. Our results indicate that the holo-mycoheterotrophic Ericaceae exhibit extensive loss of genes relating to photosynthetic function and expression of the plastome but retain genes with possible functions outside photosynthesis. Mixotrophic taxa tend to retain most genes relating to photosynthetic functions but are varied regarding the plastid ndh gene content. This investigation extends previous inferences that the loss of the NDH complex occurs prior to becoming holo-heterotrophic and it shows that the pattern of gene losses among mycoheterotrophic Ericaceae is similar to that of haustorial parasites. Additionally, we identify the most desirable candidate species for entire plastome sequencing.


Mycoheteotrophs Ericaceae Plastid genome Southern hybridization Phylogeny PHYA 



For providing generous access to their live plant collections, the authors are grateful to directors/managers of the following greenhouses: Indiana University (Bloomington, IN, USA), the University of Toronto (Toronto, ON, Canada), and the University of Washington (Seattle, WA, USA). We would also like to thank Masha Kuzmina for collecting and providing plant material. Special thanks are due to Dan Nickrent and two anonymous reviewers for their valuable suggestions that considerably improved earlier versions of the manuscript. Financial support from the Natural Sciences and Engineering Research Council of Canada (grant no. 326439), the Canada Foundation for Innovation (grant no. 12810), and the Ontario Research Funds to S. Stefanović is gratefully acknowledged. We also thank the Natural Sciences and Engineering Research Council of Canada for the scholarship award provided to T. Braukmann.

Supplementary material

11103_2012_9884_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 28 kb)


  1. Barbrook AC, Howe CJ, Purton S (2006) Why is plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci 11:101–108PubMedCrossRefGoogle Scholar
  2. Barkman TJ, McNeal JR, Lim S-H, Coat G, Croom HB, Young ND, dePamphilis CW (2007) Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol 7:248PubMedCrossRefGoogle Scholar
  3. Barrett CF, Freudenstein JV (2008) Molecular evolution of rbcL in mycoheterotrophic coralroot orchids (Corallorhiza Gagnebin, Orchidaceae). Mol Phylogenet Evol 47(2):665–679PubMedCrossRefGoogle Scholar
  4. Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am J Bot 95(10):1307–1327PubMedCrossRefGoogle Scholar
  5. Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? Bioessays 6:279–282PubMedCrossRefGoogle Scholar
  6. Bennett JR, Mathews S (2006) Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. Am J Bot 93(7):1039–1051PubMedCrossRefGoogle Scholar
  7. Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352PubMedCrossRefGoogle Scholar
  8. Bidartondo MI, Bruns TD (2001) Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographical structure. Mol Ecol 10:2285–2295PubMedCrossRefGoogle Scholar
  9. Blazier JC, Gusinger MM, Jansen RK (2011) Recent loss of plastid encoded ndh genes within Erodium (Gerianaceae). Plant Mol Biol 76(3–5):263–272CrossRefGoogle Scholar
  10. Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix JD (1997) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 16:6095–6104PubMedCrossRefGoogle Scholar
  11. Braukmann TWA, Kuzmina M, Stefanović S (2009) Loss of all plastid ndh genes in gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny. Curr Genet 55(3):323–337PubMedCrossRefGoogle Scholar
  12. Bungard RA (2004) Photosynthetic evolution in parasitic plants: insight from the chloroplast genome. Bioessays 26:235–247PubMedCrossRefGoogle Scholar
  13. Carrie C, Giraud E, Whelan J (2009) Protein transport in organelles: dual targeting of proteins to mitochondria and chloroplasts. FEBS J 276:1187–1195PubMedCrossRefGoogle Scholar
  14. Copeland HF (1941) Further studies on Monotropoideae. Madroño 6:97–119Google Scholar
  15. Cullings K (1994) Molecular phylogeny of the Monotropoideae (Ericaceae) with a note on the placement of Pyroloideae. J Evol Biol 7(5):501–516CrossRefGoogle Scholar
  16. Davis CC, Latvis M, Nickrent DL, Wurdack KJ, Baum DA (2007) Floral gigantism in Rafflesiaceae. Science 315:1812PubMedCrossRefGoogle Scholar
  17. Delannoy E, Fijii S, Colas des Francs C, Brundett M, Small I (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 28(56):2077–2086. doi: 10.1093/molbev/msr028 PubMedCrossRefGoogle Scholar
  18. Delavault P, Thalouarn P (2002) The obligate root parasite Orobanche cumara exhibits several rbcL sequences. Gene 297:85–92PubMedCrossRefGoogle Scholar
  19. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  20. Doyle JJ, Doyle JL, Palmer JD (1995) Multiple independent losses of two genes and one intron from legume chloroplast genomes. Mol Phylogenet Evol 5:429–438CrossRefGoogle Scholar
  21. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir M, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious v5.4.4 Biomatters Ltd., Auckland.
  22. Feldenkris E, Broe M, Freudenstein J (2011) A mitochrondrial DNA and combined analysis at the base of Ericaceae. Botany 2011, St. Louis MO, Botanical Society of America, St. Louis Mo, abstract 19010Google Scholar
  23. Felsenstein J (1978) The number of evolutionary trees. Syst Zool 27:27–33CrossRefGoogle Scholar
  24. Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17:368–376Google Scholar
  25. Felsenstein J (1985) Confidence limits on phylogenies—an approach using bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  26. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20(4):406–416Google Scholar
  27. Freudenstein JV (1999) Relationship and character transformation in Pyroloideae (Ericaceae) based on ITS sequences, morphology, and development. Syst Bot 24:398–408CrossRefGoogle Scholar
  28. Funk HT, Berg S, Krupinska K, Maier UG, Krause K (2007) Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol 7:45PubMedCrossRefGoogle Scholar
  29. Goldman N, Anderson JP, Rodrigo AG (2000) Likelihood based tests of topologies in phylogenetics. Syst Bot 49:652–670Google Scholar
  30. Graham SW, Olmstead RG (2000) Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Am J Bot 87:1712–1730PubMedCrossRefGoogle Scholar
  31. Hendy MD, Penny D (1989) A framework for the quantitative study of evolutionary trees. Syst Zool 38:296–309Google Scholar
  32. Hermann PM, Palser BF (2000) Stamen development in the Ericaceae. I. Anther wall, microsporogenesis, inversion, and appendages. Am J Bot 87(7):934–957PubMedCrossRefGoogle Scholar
  33. Hoot SB, Culham A, Crane PR (1995) The utility of the atpB gene sequences in resolving phylogenetic relationships: comparison with rbcL and 18S ribomsomal DNA sequences in the Lardizabalaceae. Ann MO Bot Gard 82(2):194–207CrossRefGoogle Scholar
  34. Jansen RK, Cai Z, Raubeson LA, Daniell H, dePamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:1369–1374CrossRefGoogle Scholar
  35. Krause K (2008) From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 54:111–121PubMedCrossRefGoogle Scholar
  36. Krisa B (1971) Beitrage zur taxonomie und chorologie der Gattung Pyrola L. Bot Jahrb Syst 90:476–508Google Scholar
  37. Kron KA, Judd WS, Stevens PF, Crayn DM, Anderberg AA, Gadek PA, Quinn CJ, Luteyn JL (2002) Phylogenetic classification of Ericaceae: molecular and morphological evidence. Bot Rev 68:35–423CrossRefGoogle Scholar
  38. Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, BerkeleyGoogle Scholar
  39. Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93PubMedCrossRefGoogle Scholar
  40. Lemaire B, Huysmans S, Smets E, Merckx V (2010) Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms. J Plant Res 124(5):561–576. doi: 10.1007/s10265-010-0395-5 PubMedCrossRefGoogle Scholar
  41. Liu ZW, Wang Z, Zhou J, Peng H (2011) Phylogeny of Pyroleae (Ericaceae): implications for character evolution. J Plant Res 124:325–337PubMedCrossRefGoogle Scholar
  42. Lockhart PJ, Larkum AWD, Steel MA, Waddell PJ, Penny D (1996) Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis. Proc Natl Acad Sci USA 93:1930–1934PubMedCrossRefGoogle Scholar
  43. Lusson NA, Delavault PM, Thalouarn PA (1998) The rbcL gene from the non-photosynthetic parastite Lathraea clandestina is not transcribed by a plastid-encoded RNA polymerase. Curr Genet 34:212–215PubMedCrossRefGoogle Scholar
  44. Martin M, Sabater B (2010) Plastid ndh genes in plant evolution. Plant Physiol Biochem 48:636–645PubMedCrossRefGoogle Scholar
  45. Mathews S, Sharrock RA (1996) The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of loci found in dicot angiosperms. Mol Biol Evol 13(8):1141–1150PubMedGoogle Scholar
  46. McNeal JR, Kuehl JV, Boore JL, dePamphilis CW (2007a) Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta. BMC Plant Biol 7:57PubMedCrossRefGoogle Scholar
  47. McNeal JR, Arumugunathan K, Kuehl JV, Boore JL, dePamphilis CW (2007b) Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae). BMC Biol 5:55PubMedCrossRefGoogle Scholar
  48. Merckx V, Freudenstein JV (2010) Evolution of mycoheterotrophy in plants: a phylogenetic perspective. New Phytol 185:605–609PubMedCrossRefGoogle Scholar
  49. Neyland R, Hennigan MK (2004) A cladistic analysis of Monotropa uniflora (Ericaceae) inferred from large ribosomal subunit (26S) rRNA gene sequences. Castanea 69:265–271CrossRefGoogle Scholar
  50. Nickrent DL (2002) Orígenes filosgenéticos de las plantas parásitas. In: López-sáez JA, Catalán P, Sáez L (eds) Plantas parásitas de la Península Ibérica e Islas Baleares. Mundi-Prensa Libros, Madrid, pp 29–56Google Scholar
  51. Nickrent DL, Ouyang Y, Duff RJ, dePamphilis CW (1997) Do nonasterid holoparasitic flowering plants have plastid genomes? Plant Mol Biol 34:731–743PubMedCrossRefGoogle Scholar
  52. Nickrent DL, Duff RJ, Colwell AE, Wolfe AD, Young ND, Steiner KE, dePamphilis CW (1998) Molecular phylogenetic and evolutionary studies of parasitic plants. In: Soltis D, Soltis P, Doyle J (eds) Molecular systematics of plants II. DNA sequencing. Kluwer, Boston, pp 211–241CrossRefGoogle Scholar
  53. Nickrent DL, Blarer A, Qiu Y-L, Vidal-Russel R, Anderson FE (2004) Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer. BMC Evol Biol 4:40PubMedCrossRefGoogle Scholar
  54. Olmstead RG, Sweere JA (1994) Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst Biol 43:467–481CrossRefGoogle Scholar
  55. Palmer JD (1990) Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet 6:115–120PubMedCrossRefGoogle Scholar
  56. Palmer JD, Delwiche CF (1998) The origin and evolution of plastids their genomes. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II. Kluwer, Boston, pp 375–409CrossRefGoogle Scholar
  57. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  58. Ravi V, Khurana JP, Tyagi AK, Khurana P (2008) An update on chloroplast genomes. Plant Syst Evol 271:101–122CrossRefGoogle Scholar
  59. Selosse MA, Roy M (2009) Green plants that feed on fungus: facts and questions about mixotrophy. Trends Plant Sci 14(2):64–70PubMedCrossRefGoogle Scholar
  60. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Bot 51:369–381Google Scholar
  61. Shimodaira H, Hasegawa M (1999) Multiple comparisons of loglikelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116Google Scholar
  62. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247PubMedCrossRefGoogle Scholar
  63. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049Google Scholar
  64. Stefanović S, Olmstead RG (2004) Testing the phylogenetic position of a parasitic plant (Cuscuta, Convolvulaceae, Asteridae): Bayesian inference and the parametric bootstrap on data drawn from three genomes. Syst Biol 53:384–399PubMedCrossRefGoogle Scholar
  65. Stefanović S, Kuzmina M, Costea M (2007) Delimitation of major lineages within Cuscuta subgenus Grammica (Convolvulaceae) using plastid and nuclear DNA sequences. Am J Bot 94(4):568–589PubMedCrossRefGoogle Scholar
  66. Swofford DL (2002) Phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sinauer, SunderlandGoogle Scholar
  67. Ueda M, Nishikawa T, Fujimoto M, Takanashi H, Arimura S, Tsutsumi N, Kadowaki K (2008) Substitution of the gene for chloroplast RPS16 was assisted by generation of dual targeting signal. Mol Biol Evol 25(8):1566–1575PubMedCrossRefGoogle Scholar
  68. Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297PubMedCrossRefGoogle Scholar
  69. Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG, dePamphilis CW, Boore JL, Goffinet B (2008) Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Mol Biol Evol 25:393–401PubMedCrossRefGoogle Scholar
  70. Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: Calibrating the family tree. Proceedings. Biological Sciences 268: 2211–2220Google Scholar
  71. Wolfe AD, dePamphilis CW (1997) Alternate pathways of evolution for the photosynthetic gene rbcL in four non-photosynthetic species of Orobanche. Plant Mol Biol 33:965–977PubMedCrossRefGoogle Scholar
  72. Wolfe AD, dePamphilis CW (1998) The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and non-photosynthetic parasitic plants. Mol Biol Evol 15:1243–1258PubMedGoogle Scholar
  73. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058PubMedCrossRefGoogle Scholar
  74. Wolfe KH, Morden CW, Ems SC, Palmer JD (1992) Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol 35:304–317PubMedCrossRefGoogle Scholar
  75. Wu F, Chan M, Liao D, Hsu C, Lee Y, Daniell H, Duvall MR, Lin C (2010) Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol 10:68PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Toronto MississaugaMississaugaCanada

Personalised recommendations