Plant Molecular Biology

, 77:407 | Cite as

Nitrogen status dependent oxidative stress tolerance conferred by overexpression of MnSOD and FeSOD proteins in Anabaena sp. strain PCC7120

  • Prashanth S. Raghavan
  • Hema Rajaram
  • Shree K. Apte


The heterocystous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 displayed two superoxide dismutase (SOD) activities, namely FeSOD and MnSOD. Prolonged exposure of Anabaena PCC7120 cells to methyl viologen mediated oxidative stress resulted in loss of both SOD activities and induced cell lysis. The two SOD proteins were individually overexpressed constitutively in Anabaena PCC7120, by genetic manipulation. Under nitrogen-fixing conditions, overexpression of MnSOD (sodA) enhanced oxidative stress tolerance, while FeSOD (sodB) overexpression was detrimental. Under nitrogen supplemented conditions, overexpression of either SOD protein, especially FeSOD, conferred significant tolerance against oxidative stress. The results demonstrate a nitrogen status-dependent protective role of individual superoxide dismutases in Anabaena PCC7120 during oxidative stress.


Anabaena FeSOD MnSOD Nitrogen status Oxidative stress 

Supplementary material

11103_2011_9821_MOESM1_ESM.jpg (104 kb)
Supplementary material 1 (JPEG 103 kb)
11103_2011_9821_MOESM2_ESM.jpg (108 kb)
Supplementary material 2 (JPEG 107 kb)


  1. Alquéres SM, Oliveira JH, Nogueira EM, Guedes HV, Oliveira PL, Câmara F, Baldani JI, Martins OB (2010) Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in Gluconacetobacter diazotrophicus. Arch Microbiol 192:835–841PubMedCrossRefGoogle Scholar
  2. Atzenhofer W, Regelsberger G, Jacob U, Peschek G, Furtmüller P, Huber R, Obinger C (2002) The 2.0 Å resolution structure of the catalytic portion of a cyanobacterial membrane-bound manganese superoxide dismutase. J Mol Biol 321:479–489PubMedCrossRefGoogle Scholar
  3. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287PubMedCrossRefGoogle Scholar
  4. Beyer Jr WF, Fridovich I (1987) Effect of hydrogen peroxide on the iron-containing superoxide dismutase of Escherichia coli. Biochemistry 26:1251–1257PubMedCrossRefGoogle Scholar
  5. Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116CrossRefGoogle Scholar
  6. Brock TD (1973) Evolutionary and ecological aspects of cyanophytes: In: Carr NG, Whitaton BA (eds) The biology of blue-green algae. Blackwell, Oxford, pp 487–500Google Scholar
  7. Campbell WS, Laudenbach DE (1995) Characterization of four superoxide dismutase genes from a filamentous cyanobacterium. J Bacteriol 177:964–972PubMedGoogle Scholar
  8. Castenholz RW (1988) Culturing of cyanobacteria. Methods Enzymol 167:68–93CrossRefGoogle Scholar
  9. Chaurasia AK, Parasnis A, Apte SK (2008) An integrative expression vector for strain improvement and environmental applications of nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120. J Microbiol Methods 73:133–141PubMedCrossRefGoogle Scholar
  10. Elhai J, Wolk CP (1988) Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167:747–754PubMedCrossRefGoogle Scholar
  11. Elhai J, Vepritskiy A, Muro-Pastor AM, Flores E, Wolk CP (1997) Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J Bacteriol 179:1998–2005PubMedGoogle Scholar
  12. Fridovich I (1995) Superoxide radical and superoxide dismutases. Ann Rev Biochem 64:97–112PubMedCrossRefGoogle Scholar
  13. Fridovich I (1997) Superoxide anion radical (O2 ), superoxide dismutase and related matters. J Biol Chem 272:18515–18517PubMedCrossRefGoogle Scholar
  14. Gruber MY, Glick BR, Thompson JE (1990) Cloned MnSod reduces oxidative stress in Escherichia coli and Anacystis nidulans. Proc Natl Acad Sci USA 87:2608–2612PubMedCrossRefGoogle Scholar
  15. Haaker H, Klugkist J (1987) The bioenergetics of electron transport to nitrogenase. FEMS Microbiol Rev 46:57–71CrossRefGoogle Scholar
  16. Herbert SK, Samson G, Fork DC, Laudenbach DE (1992) Characterization of damage to photosystem I and II in a cyanobacterium lacking detectable FeSod activity. Proc Natl Acad Sci USA 89:8716–8720PubMedCrossRefGoogle Scholar
  17. Kim JH, Suh KH (2005) Light-dependent expression of superoxide dismutase from Synechocystis sp. Strain PCC6803. Arch Microbiol 183:218–223PubMedCrossRefGoogle Scholar
  18. Latifi A, Jeanjean R, Lemeille S, Havaux M, Zhang CC (2005) Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J Bacteriol 187:6596–6598PubMedCrossRefGoogle Scholar
  19. Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278PubMedCrossRefGoogle Scholar
  20. Li T, Huang X, Zhou R, Liu Y, Li B, Nomura C, Zhao J (2002) Differential expression and localization of Mn and Fe superoxide dismutases in the heterocystous cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 184:5096–5103PubMedCrossRefGoogle Scholar
  21. Liu Y, Zhou R, Zhao J (2000) Molecular cloning and sequencing of the sodB gene from a heterocystous cyanobacterium Anabaena sp. PCC 7120. Biochim Biophys Acta 149:1248–1252Google Scholar
  22. Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322Google Scholar
  23. Priya B, Premanandh J, Dhanalakshmi RT, Seethalakshmi T, Uma L, Prabaharan D, Subramanian G (2007) Comparative analysis of cyanobacterial superoxide dismutases to discriminate cannonical form. BMC Genomics 8:435PubMedCrossRefGoogle Scholar
  24. Regelsberger G, Atzenhofer W, Ruker F, Peschek GA, Jakopitsch C, Paumann M, Furtmüller PG, Obinger C (2002) Biochemical characterization of a membrane-bound manganese-containing superoxide dismutase from the cyanobacterium Anabaena PCC 7120. J Biol Chem 277:43615–43622PubMedCrossRefGoogle Scholar
  25. Regelsberger G, Laaha U, Dietmann D, Rüker F, Canini A, Grilli-Caiola M, Furtmüller PG, Jakopitsch C, Peschek GA, Obinger C (2004) The iron superoxide dismutase from the filamentous cyanobacterium Nostoc PCC 7120. Localization, overexpression and biochemical characterization. J Biol Chem 279:44384–44393PubMedCrossRefGoogle Scholar
  26. Stewart WDP (1980) Some aspects of structure and function in nitrogen-fixing cyanobacteria. Annu Rev Microbiol 34:497–536PubMedCrossRefGoogle Scholar
  27. Takeshima Y, Takatsugu N, Sugiura M, Hagiwara H (1994) High-level expression of human superoxide dismutase in cyanobacterium Anacystis nidulans 6301. Proc Natl Acad Sci USA 91:9685–9689PubMedCrossRefGoogle Scholar
  28. Thomas DJ, Avenson TJ, Thomas JB, Herbert SK (1998) A cyanobacterium lacking iron superoxide dismutase is sensitized to oxidative stress induced with methyl viologen but is not sensitized to oxidative stress induced with norflurazon. Plant Physiol 116:1593–1602PubMedCrossRefGoogle Scholar
  29. Walsby AE (1986) Prochlorophytes: origin of chloroplasts. Nature 320:212CrossRefGoogle Scholar
  30. Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935–938PubMedCrossRefGoogle Scholar
  31. Zhao W, Guo Q, Zhao J (2007) A membrane-associated Mn-superoxide dismutase protects the photosynthetic apparatus and nitrogenase from oxidative damage in the cyanobacterium Anabaena sp. PCC 7120. Plant Cell Physiol 48:563–572PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Prashanth S. Raghavan
    • 1
  • Hema Rajaram
    • 1
  • Shree K. Apte
    • 1
  1. 1.Molecular Biology DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations