Skip to main content
Log in

Molecular characterization, expression pattern, and functional analysis of the OsIRL gene family encoding intracellular Ras-group-related LRR proteins in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Leucine-rich repeat proteins constitute a large gene family and play important roles in plant growth and development. Among them, Arabidopsis PIRL is a plant-specific class of intracellular Ras-group-related leucine-rich repeat proteins. In this study, we identified eight homologues of PIRLs in rice and designated them as OsIRL proteins. We described the gene structures, chromosome localizations, protein motifs, and phylogenetic relationships of the OsIRL gene family. The expression profiles of OsIRL genes were analyzed throughout the entire rice life cycle, along with light and three hormone stress conditions, using quantitative RT-PCR and microarray data. All OsIRL genes were expressed in at least one experimental stage and exhibited divergent expression patterns, with several genes showing preferential expression at specific stages. OsIRL4 and OsIRL5 showed higher expression levels under light compared to dark. OsIRL4 and OsIRL7 exhibited significant differential expression in response to hormone treatments. Six T-DNA or Tos17 insertion lines for five individual OsIRL genes were identified and examined morphologically. The comprehensive expression profile elucidated in this investigation together with the characterized insertion lines will provide a solid foundation for in-depth dissection of OsIRL functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LRR:

Leucine-rich repeat

PIRL:

Plant intracellular Ras-group-related LRR

OsIRL:

Oryza sativa intracellular Ras-group-related LRR

RT-PCR:

Reverse transcription polymerase chain reaction

GA:

Gibberellic acid

NAA:

Naphthalene acetic acid

KT:

Kinetin

References

  • Baumberger N, Doesseger B, Guyot R, Diet A, Parsons RL, Clark MA, Simmons MP, Bedinger P, Goff SA, Ringli C, Keller B (2003) Whole-genome comparison of leucine-rich repeat extensins in Arabidopsis and rice. A conserved family of cell wall proteins form a vegetative and a reproductive clade. Plant Physiol 131:1313–1326

    Article  CAS  PubMed  Google Scholar 

  • Bella J, Hindle KL, McEwan PA, Lovell SC (2008) The leucine-rich repeat structure. Cell Mol Life Sci 65:2307–2333

    Article  CAS  PubMed  Google Scholar 

  • Buchanan SG, Gay NJ (1996) Structural and functional diversity in the leucine-rich repeat family of proteins. Prog Biophys Mol Biol 65:1–44

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  Google Scholar 

  • Claudianos C, Campbell HD (1995) The novel flightless-I gene brings together two gene families, actin-binding proteins related to gelsolin and leucine-rich-repeat proteins involved in Ras signal transduction. Mol Biol Evol 12:405–414

    CAS  PubMed  Google Scholar 

  • Cutler ML, Bassin RH, Zanoni L, Talbot N (1992) Isolation of rsp-1, a novel cDNA capable of suppressing v-Ras transformation. Mol Cell Biol 12:3750–3756

    CAS  PubMed  Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249

    Article  CAS  PubMed  Google Scholar 

  • Di Matteo A, Bonivento D, Tsernoglou D, Federici L, Cervone F (2006) Polygalacturonase-inhibiting protein (PGIP) in plant defence: a structural view. Phytochemistry 67:528–533

    Article  CAS  PubMed  Google Scholar 

  • Dievart A, Clark SE (2004) LRR-containing receptors regulating plant development and defence. Development 131:251–261

    Article  CAS  PubMed  Google Scholar 

  • Forsthoefel NR, Cutler K, Port MD, Yamamoto T, Vernon DM (2005) PIRLs: a novel class of plant intracellular leucine-rich repeat proteins. Plant Cell Physiol 46:913–922

    Article  CAS  PubMed  Google Scholar 

  • Gendron JM, Wang ZY (2007) Multiple mechanisms modulate brassinosteroid signaling. Curr Opin Plant Biol 10:436–441

    Article  CAS  PubMed  Google Scholar 

  • Guyon V, Tang WH, Monti MM, Raiola A, Lorenzo GD, McCormick S, Taylor LP (2004) Antisense phenotypes reveal a role for SHY, a pollen-specific leucine-rich repeat protein, in pollen tube growth. Plant J 39:643–654

    Article  CAS  PubMed  Google Scholar 

  • Han MJ, Jung KH, Yi G, Lee DY, An G (2006) Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol 47:1457–1472

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143:1467–1483

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Lee J, Dardick C, Seo YS, Cao P et al (2008) Identification and functional analysis of light-responsive unique genes and gene family members in rice. PLoS Genet 4:e1000164

    Article  PubMed  Google Scholar 

  • Kajava AV (1998) Structural diversity of leucine-rich repeat proteins. J Mol Biol 277:519–527

    Article  CAS  PubMed  Google Scholar 

  • Kajava AV, Vassart G, Wodak SJ (1995) Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats. Structure 3:867–877

    Article  CAS  PubMed  Google Scholar 

  • Kobe B, Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19:415–421

    Article  CAS  PubMed  Google Scholar 

  • Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725–732

    Article  CAS  PubMed  Google Scholar 

  • Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, dePamphilis CW (2007) Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 50:873–885

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Kurepin LV, Emery RJ, Pharis RP, Reid DM (2007) The interaction of light quality and irradiance with gibberellins, cytokinins and auxin in regulating growth of Helianthus annuus hypocotyls. Plant Cell Environ 30:147–155

    Article  CAS  PubMed  Google Scholar 

  • Kuroda H, Takahashi N, Shimada H, Seki M, Shinozaki K, Matsui M (2002) Classification and expression analysis of Arabidopsis F-box-containing protein genes. Plant Cell Physiol 43:1073–1085

    Article  CAS  PubMed  Google Scholar 

  • Long TA, Brady SM, Benfey PN (2008) Systems approaches to identifying gene regulatory networks in plants. Annu Rev Cell Dev Biol 24:81–103

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Conery J (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Muller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097

    Article  PubMed  Google Scholar 

  • Nibau C, Wu HM, Cheung AY (2006) RAC/ROP GTPases: ‘hubs’ for signal integration and diversification in plants. Trends Plant Sci 11:309–315

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan M, Cournoyer P, Dinesh-Kumar SP (2009) The leucine-rich repeat domain in plant innate immunity: a wealth of possibilities. Cell Microbiol 11:191–198

    Article  CAS  PubMed  Google Scholar 

  • Rensink WA, Buell CR (2005) Microarray expression profiling resources for plant genomics. Trends Plant Sci 10:603–609

    Article  CAS  PubMed  Google Scholar 

  • Seo M, Nambara E, Choi G, Yamaguchi S (2009) Interaction of light and hormone signals in germinating seeds. Plant Mol Biol 69:463–472

    Article  CAS  PubMed  Google Scholar 

  • Sieburth DS, Sun Q, Han M (1998) SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell 94:119–130

    Article  CAS  PubMed  Google Scholar 

  • Stratford S, Barne W, Hohorst DL, Sagert JG, Cotter R, Golubiewski A, Showalter AM, McCormick S, Bedinger P (2001) A leucine-rich repeat region is conserved in pollen extensin-like (Pex) proteins in monocots and dicots. Plant Mol Biol 46:43–56

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Choe HR, Nishida Y, Yamawaki-Kataoka Y, Ohnishi S, Tamaoki T, Kataoka T (1990) Leucine-rich repeats and carboxyl terminus are required for interaction of yeast adenylate cyclase with RAS proteins. Proc Natl Acad Sci USA 87:8711–8715

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • van der Hoorn RA, Wulff BB, Rivas S, Durrant MC, van der Ploeg A, de Wit PJ, Jones JD (2005) Structure-function analysis of cf-9, a receptor-like protein with extracytoplasmic leucine-rich repeats. Plant Cell 17:1000–1015

    Article  PubMed  Google Scholar 

  • Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Xie W, Chen Y, Tang W, Yang J, Ye R, Liu L, Lin Y, Xu C, Xiao J, Zhang Q (2010) A dynamic gene expression atlas covering the entire life cycle of rice. Plant J 61:752–766

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Zhou DX, Wang S, Zhang Q (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35:418–427

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, McCouch SR, Zhang Q (2005) How can we use genomics to improve cereals with rice as a reference genome? Plant Mol Biol 59:7–26

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H et al (2005) The Genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  Google Scholar 

  • Zhang J, Guo D, Chang Y, You C, Li X et al (2007) Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J 49:947–959

    Article  CAS  PubMed  Google Scholar 

  • Zheng ZL, Yang Z (2000) The Rop GTPase: an emerging signaling switch in plants. Plant Mol Biol 44:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Gynheung An, Hongwei Xue, and Hirohiko Hirochika for providing mutant seeds. This research was supported by grants from the National Science Foundation of China and the National Special Key Project of China on Functional Genomics of Major Plants and Animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyin Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, C., Dai, X., Li, X. et al. Molecular characterization, expression pattern, and functional analysis of the OsIRL gene family encoding intracellular Ras-group-related LRR proteins in rice. Plant Mol Biol 74, 617–629 (2010). https://doi.org/10.1007/s11103-010-9704-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9704-6

Keywords

Navigation