Plant Molecular Biology

, Volume 74, Issue 6, pp 573–590 | Cite as

An ordered EST catalogue and gene expression profiles of cassava (Manihot esculenta) at key growth stages

  • You-Zhi Li
  • Ying-Hua Pan
  • Chang-Bin Sun
  • Hai-Tao Dong
  • Xing-Lu Luo
  • Zhi-Qiang Wang
  • Ji-Liang Tang
  • Baoshan Chen


A cDNA library was constructed from the root tissues of cassava variety Huanan 124 at the root bulking stage. A total of 9,600 cDNA clones from the library were sequenced with single-pass from the 5′-terminus to establish a catalogue of expressed sequence tags (ESTs). Assembly of the resulting EST sequences resulted in 2,878 putative unigenes. Blastn analysis showed that 62.6% of the unigenes matched with known cassava ESTs and the rest had no ‘hits’ against the cassava database in the integrative PlantGDB database. Blastx analysis showed that 1,715 (59.59%) of the unigenes matched with one or more GenBank protein entries and 1,163 (40.41%) had no ‘hits’. A cDNA microarray with 2,878 unigenes was developed and used to analyze gene expression profiling of Huanan 124 at key growth stages including seedling, formation of root system, root bulking, and starch maturity. Array data analysis revealed that (1) the higher ratio of up-regulated ribosome-related genes was accompanied by a high ratio of up-regulated ubiquitin, proteasome-related and protease genes in cassava roots; (2) starch formation and degradation simultaneously occur at the early stages of root development but starch degradation is declined partially due to decrease in UDP-glucose dehydrogenase activity with root maturity; (3) starch may also be synthesized in situ in roots; (4) starch synthesis, translocation, and accumulation are also associated probably with signaling pathways that parallel Wnt, LAM, TCS and ErbB signaling pathways in animals; (5) constitutive expression of stress-responsive genes may be due to the adaptation of cassava to harsh environments during long-term evolution.


Cassava cDNA library EST cDNA microarray Gene expression Starch 



ADP glucose pyrophosphorylase




Days after planting


Database of EST


Epidermal growth factor family of receptor tyrosine kinase


Expressed sequence tag


Granule-bound SS


Gene ontology




Janus kinase-signal transducer and activator of transcription


Kyoto encyclopedia of genes and genomes


Linoleic acid metabolism


Natural logarithm


Mitogen-activated protein kinase




Mammalian target of rapamycin


Normalized AR volume




Quantitative real-time PCR


Revolutions per minute


Starch branching enzyme




Starch synthase


Subtracted value


Two-component system

TGF beta

Transforming growth factor beta


Vascular endothelial growth factor




Yeast trypton





This work was supported by The Pilot Project of the China National Key Program for Fundamental Research (2004CCA00600) and The Project of the China National Key Program for Fundamental Research (2010CB126601).

Supplementary material

11103_2010_9698_MOESM1_ESM.xls (596 kb)
Supplementary material 1 (XLS 596 kb)
11103_2010_9698_MOESM2_ESM.xls (818 kb)
Supplementary material 2 (XLS 818 kb)
11103_2010_9698_MOESM3_ESM.doc (344 kb)
Supplementary material 3 (DOC 343 kb)
11103_2010_9698_MOESM4_ESM.xls (8.9 mb)
Supplementary material 4 (XLS 9,134 kb)
11103_2010_9698_MOESM5_ESM.xls (54 kb)
Supplementary material 5 (XLS 54 kb)
11103_2010_9698_MOESM6_ESM.xls (212 kb)
Supplementary material 6 (XLS 212 kb)
11103_2010_9698_MOESM7_ESM.xls (314 kb)
Supplementary material 7 (XLS 313 kb)
11103_2010_9698_MOESM8_ESM.xls (296 kb)
Supplementary material 8 (XLS 296 kb)
11103_2010_9698_MOESM9_ESM.xls (350 kb)
Supplementary material 9 (XLS 349 kb)
11103_2010_9698_MOESM10_ESM.xls (58 kb)
Supplementary material 10 (XLS 58 kb)
11103_2010_9698_MOESM11_ESM.doc (38 kb)
Supplementary material 11 (DOC 38 kb)


  1. Aitken A, Collinge DB, van Heusden BP, Isobe T, Roseboom PH, Rosenfeld G, Soll J (1992) 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem Sci 17:498–501CrossRefPubMedGoogle Scholar
  2. Alves AAC (2002) Botany and physiology. In: Hillocks RJ, Thresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publishing, New York–Wallingford, pp 67–89CrossRefGoogle Scholar
  3. Anderson JV, Delseny M, Fregene MA, Jorge V, Mba C, Lopez C, Restrepo S, Soto M, Piegu B, Verdier V, Cooke R, Tohme J, Horvath DP (2004) An EST resource for cassava and other species of Euphorbiaceae. Plant Mol Biol 56:527–539CrossRefPubMedGoogle Scholar
  4. Asher G, Shaul Y (2006) Ubiquitin-independent degradation: lessons from the p53 model. Isr Med Assoc J 8:229–232PubMedGoogle Scholar
  5. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979CrossRefPubMedGoogle Scholar
  6. Baguma Y, Sun C, Ahlandsberg S, Mutisya J, Palmqvist S, Rubaihayo PR, Magambo MJ, Egwang TG, Larsson H, Jansson C (2003) Expression patterns of the gene encoding starch branching enzyme II in the storage roots of cassava (Manihot esculenta Crantz). Plant Sci 164:833–839CrossRefGoogle Scholar
  7. Ball S, Morell M (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233CrossRefPubMedGoogle Scholar
  8. Bellotti AC, Smith L, Lapointe SL (1999) Recent advances in cassava pest management. Annu Rev Entomol 44:343–370CrossRefPubMedGoogle Scholar
  9. Beltrano J, Ronco MG, Montaldi ER (1999) Drought stress syndrome in wheat is provoked by ethylene evolution imbalance and reversed by rewatering, aminoethoxyvinylglycine, or sodium benzoate. J Plant Growth Regul 18:59–64CrossRefPubMedGoogle Scholar
  10. Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G (2006) Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 17:789–810CrossRefPubMedGoogle Scholar
  11. Camon E, Barrell D, Lee V, Dimmer E, Apweiler R (2004) The Gene Ontology Annotation (GOA) database-an integrated resource of GO annotations to the UniProt knowledgebase. In Silico Biol 4:5–6PubMedGoogle Scholar
  12. Chavarriaga-Aguirre P, Maya MM, Bonierbale MW, Kresovich S, Fregene MA, Tohme J, Kochert G (1998) Microsatellites in cassava (Manihot esculenta Crantz): discovery, inheritance and variability. Theor Appl Genet 97:493–501CrossRefGoogle Scholar
  13. Chen X, Yang J, Evans PM, Liu C (2008) Wnt signaling: the good and the bad. Acta Biochim Biophys Sin (Shanghai) 40:577–594CrossRefGoogle Scholar
  14. Citri A, Skaria KB, Yarden Y (2003) The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 284:54–65CrossRefPubMedGoogle Scholar
  15. Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. doi: 10.1155/2008/619832
  16. Davis G, McMullen M, Baysdorfer C, Musket T, Grant D, Staebell M, Xu G, Polacco M, Koster L, Melia-Hancock S, Houchins K, Chao S, Coe EH Jr (1999) A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152:1137–1172PubMedGoogle Scholar
  17. Dravid G, Ye Z, Hammond H, Chen G, Pyle A, Donovan P, Yu X, Cheng L (2005) Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 23:1489–1501CrossRefPubMedGoogle Scholar
  18. El-Sharkawy MA (2004) Cassava biology and physiology. Plant Mol Biol 56:481–501CrossRefPubMedGoogle Scholar
  19. Estelle M (2001) Proteases and cellular regulation in plants. Curr Opin Plant Biol 4:254–260CrossRefPubMedGoogle Scholar
  20. Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194PubMedGoogle Scholar
  21. Ewing B, Hillier L, Wedl MC, Green P (1998) Basecalling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  22. Förster A, Hill CP (2003) Proteasome degradation: enter the substrate. Trends Cell Biol 13:550–553CrossRefPubMedGoogle Scholar
  23. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11CrossRefPubMedGoogle Scholar
  24. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R, Gene Ontology Consortium (2004) The gene ontology (GO) database and informatics resource. Nucleic Acids Res 32(Database issue):D258–D261PubMedGoogle Scholar
  25. Haubrick LL, Assmann SM (2006) Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ 29:446–457CrossRefPubMedGoogle Scholar
  26. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877CrossRefPubMedGoogle Scholar
  27. James D, Levine AJ, Besser D, Hemmati-Brivanlou A (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273–1282CrossRefPubMedGoogle Scholar
  28. Jansson C, Westerbergh A, Zhang J, Xinwen Hu, Sun C (2009) Cassava, a potential biofuel crop in (the) People’s Republic of China. Appl Energy 86:S95–S99CrossRefGoogle Scholar
  29. Kim MC, Chung WS, Yun DJ, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2:13–21CrossRefPubMedGoogle Scholar
  30. Lokko Y, Anderson JV, Rudd S, Raji A, Horvath D, Mikel MA, Kim R, Liu L, Hernandez A, Dixon AG, Ingelbrecht IL (2007) Characterization of an 18,166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep 2:1605–1618CrossRefGoogle Scholar
  31. Lopez C, Jorge V, Piégu B, Mba C, Cortes D, Restrepo S, Soto M, Laudié M, Berger C, Cooke R, Delseny M, Tohme J, Verdier V (2004) A unigene catalogue of 5700 expressed genes in cassava. Plant Mol Biol 56:541–554CrossRefPubMedGoogle Scholar
  32. Mullikin JC, McMurray AA (1999) DNA sequencing: sequencing the genome, fast. Science 283:1867–1868CrossRefPubMedGoogle Scholar
  33. Munyikwa TRI, Langeveld S, Salehuzzaman SNIM, Jacobsen E, Visser RGF (1997) Cassava starch biosynthesis: new avenues for modifying starch quantity and quality. Euphytica 96:65–75CrossRefGoogle Scholar
  34. Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189CrossRefPubMedGoogle Scholar
  35. Oh CS, Pedley KF, Martin GB (2010) Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKKα. Plant Cell 22:260–272CrossRefPubMedGoogle Scholar
  36. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652CrossRefPubMedGoogle Scholar
  37. Qing DJ, Lu HF, Li N, Dong HT, Dong DF, Li YZ (2009) Comparative profiles of gene expression in leaves and roots of maize seedlings under the conditions of the salt stress and the removal of the salt stress. Plant Cell Physiol 50:889–903CrossRefPubMedGoogle Scholar
  38. Reilly K, Bernal D, Cortés DF, Gómez-Vásquez R, Tohme J, Beeching JR (2007) Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Mol Biol 64:187–203CrossRefPubMedGoogle Scholar
  39. Roberts MR, Bowles DJ (1999) Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants. Plant Physiol 119:1243–1250CrossRefPubMedGoogle Scholar
  40. Rudd S (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci 8:321–329CrossRefPubMedGoogle Scholar
  41. Sakurai T, Plata G, Rodríguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M (2007) Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 7:66CrossRefPubMedGoogle Scholar
  42. Shao HB, Song WY, Chu LY (2008) Advances of calcium signals involved in plant anti-drought. C R Biol 331:587–596CrossRefPubMedGoogle Scholar
  43. Unneberg P, Strömberg M, Lundeberg J, Jansson S, Sterky F (2005) Analysis of 70,000 EST sequences to study divergence between two closely related Populus species. Tree Genet Genomes 1:109–115CrossRefGoogle Scholar
  44. Wang JP, Lindsay BG, Cui L, Wall PK, Marion J, Zhang J, dePamphilis CW (2005) Gene capture prediction and overlap estimation in EST sequencing from one or multiple libraries. BMC Bioinformatics 6:300CrossRefPubMedGoogle Scholar
  45. Wieduwilt MJ, Moasser MM (2008) The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 65:1566–1584CrossRefPubMedGoogle Scholar
  46. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214CrossRefPubMedGoogle Scholar
  47. Ziska LH, Runion GB, Tomecek M, Prior SA, Torbet HA, Richar Sicher (2009) An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenergy 33:1503–1508CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • You-Zhi Li
    • 1
  • Ying-Hua Pan
    • 2
  • Chang-Bin Sun
    • 1
  • Hai-Tao Dong
    • 3
  • Xing-Lu Luo
    • 2
  • Zhi-Qiang Wang
    • 1
  • Ji-Liang Tang
    • 1
  • Baoshan Chen
    • 1
  1. 1.Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, College of Life Science and TechnologyGuangxi UniversityNanningPeople’s Republic of China
  2. 2.Agricultural CollegeGuangxi UniversityNanningPeople’s Republic of China
  3. 3.Institute of BiotechnologyZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations