Advertisement

Plant Molecular Biology

, Volume 74, Issue 3, pp 201–213 | Cite as

Functional analysis of SlEZ1 a tomato Enhancer of zeste (E(z)) gene demonstrates a role in flower development

  • A. How Kit
  • L. Boureau
  • L. Stammitti-Bert
  • D. Rolin
  • E. Teyssier
  • P. Gallusci
Article

Abstract

The Enhancer of Zeste (E(z)) Polycomb group (PcG) proteins, which are encoded by a small gene family in Arabidopsis thaliana, have been shown to participate to the control of flowering and seed development. For the time being, little is known about the function of these proteins in other plants. In tomato E(z) proteins are encoded by at least two genes namely SlEZ1 and SlEZ2 while a third gene, SlEZ3, is likely to encode a truncated non-functional protein. The analysis of the corresponding mRNA demonstrates that these two genes are differentially regulated during plant and fruit development. We also show that SlEZ1 and SlEZ2 are targeted to the nuclei. These results together with protein sequence analysis makes it likely that both proteins are functional E(z) proteins. The characterisation of SlEZ1 RNAi lines suggests that although there might be some functional redundancy between SlEZ1 and SlEZ2 in most plant organs, the former protein is likely to play specific function in flower development.

Keywords

Polycomb Epigenetic Tomato Fruit Flower Enhancer of zeste 

Notes

Acknowledgments

A How Kit and L Boureau were recipient of a grant from the French Ministry of Research and Technology. We would like to thank E Jaligot for critical reading of this manuscript, C Cabasson for statistical analysis of the results and M. Lemaire-Chamley for providing seed enriched samples.

Supplementary material

11103_2010_9657_MOESM1_ESM.doc (40 kb)
Supplementary material 1 (DOC 40 kb)
11103_2010_9657_MOESM2_ESM.doc (61 kb)
Supplementary material 2 (DOC 61 kb)
11103_2010_9657_MOESM3_ESM.pdf (139 kb)
Supplementary material 3 (PDF 139 kb)
11103_2010_9657_MOESM4_ESM.pdf (72 kb)
Supplementary material 4 (PDF 73 kb)

References

  1. Aasland R, Francis Stewart A, Gibson T (1996) The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional corepressor N-CoR and TFIIIB. Trends Biochem Sci 21:87–88PubMedGoogle Scholar
  2. Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965CrossRefPubMedGoogle Scholar
  3. Baroux C, Pien S, Grossniklaus U (2007) Chromatin modification and remodeling during early seed development. Curr Opin Genet Dev 17:473–479CrossRefPubMedGoogle Scholar
  4. Barrero LS, Cong B, Wu F, Tanksley S (2006) Developmental characterization of the fasciated locus and mapping of Arabidopsis candidate genes involved in the control of floral meristem size and carpel number in tomato. Genome 49:991–1006CrossRefPubMedGoogle Scholar
  5. Baumbusch LO, Thorstensen T, Krauss V, Fischer A, Naumann K, Assalkhou R, Schulz I, Reuter G, Aalen RB (2001) The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucl Acids Res 29:4319–4333CrossRefPubMedGoogle Scholar
  6. Benvenuto G, Formiggini F, Laflamme P, Malakhov M, Bowler C (2002) The Photomorphogenesis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosome context. Curr Biol 12:1529–1534CrossRefPubMedGoogle Scholar
  7. Bisbis B, Delmas F, Joubes J, Sicard A, Hernould M, Inze D, Mouras A, Chevalier C (2006) Cyclin-dependent kinase (CDK) inhibitors regulate the CDK-cyclin complex activities in endoreduplicating cells of developing tomato fruit. J Biol Chem 281:7374–7383CrossRefPubMedGoogle Scholar
  8. Caro E, Castellano MM, Gutierrez C (2007) A chromatin link that couples cell division to root epidermis patterning in Arabidopsis. Nature 447:213–217CrossRefPubMedGoogle Scholar
  9. Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor M-I, Nunes-Nesi A, Nikiforova V, Centero D, Ratzka A, Pauly M, Sweetlove LJ, Fernie AR (2006) Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol 142:1380–1396CrossRefPubMedGoogle Scholar
  10. Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685CrossRefPubMedGoogle Scholar
  11. Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y-H, Sung ZR, Goodrich J (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–5276CrossRefPubMedGoogle Scholar
  12. Chinnusamy V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139CrossRefPubMedGoogle Scholar
  13. Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature Genet 40:800–804CrossRefPubMedGoogle Scholar
  14. Cui H, Benfey PN (2009) Interplay between SCARECROW, GA and LIKE HETEROCHROMATIN PROTEIN 1 in ground tissue patterning in the Arabidopsis root. Plant J 58:1016–1027CrossRefPubMedGoogle Scholar
  15. Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummel DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HMJ, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895CrossRefPubMedGoogle Scholar
  16. Dennis ES, Peacock WJ (2007) Epigenetic regulation of flowering. Curr Opin Plant Biol 10:520–527CrossRefPubMedGoogle Scholar
  17. Di Sansebastiano G-P, Paris N, Marc-Martin S, Neuhaus J-M (1998) Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J 15:449–457CrossRefPubMedGoogle Scholar
  18. Fei Z, Tang X, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J 40:47–59CrossRefPubMedGoogle Scholar
  19. Gaffe J, Bru J-P, Causse M, Vidal A, Stamitti-Bert L, Carde J-P, Gallusci P (2000) LEFPS1, a tomato farnesyl pyrophosphate gene highly expressed during early fruit development. Plant Physiol 123:1351–1362CrossRefPubMedGoogle Scholar
  20. Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749CrossRefPubMedGoogle Scholar
  21. Girin T, Sorefan K, Ostergaard L (2009) Meristematic sculpting in fruit development. J Exp Bot 60:1493–1502CrossRefPubMedGoogle Scholar
  22. Gonzalez N, Gévaudant F, Hernould M, Chevalier C, Mouras A (2007) The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. Plant J 51:642–655CrossRefPubMedGoogle Scholar
  23. Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G (1997) A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386:44–51CrossRefPubMedGoogle Scholar
  24. Grant-Downton RT, Dickinson HG (2006) Epigenetics and its implications for plant biology 2. The ‘epigenetic epiphany’: epigenetics, evolution and beyond. Ann Bot 97:11–27CrossRefPubMedGoogle Scholar
  25. Guitton A, Berger F (2005) Control of reproduction by Polycomb Group complexes in animals and plants. Int J Dev Biol 49:707–716CrossRefPubMedGoogle Scholar
  26. Guyomarc’h S, Bertrand C, Delarue M, Zhou DX (2005) Regulation of meristem activity by chromatin remodelling. Trends Plant Sci 10:332–338CrossRefPubMedGoogle Scholar
  27. Haun WJ, Laoueillé-Duprat S, O’Connell MJ, Spillane C, Grossniklaus U, Phillips AR, Kaeppler SM, Springer NM (2007) Genomic imprinting, methylation and molecular evolution of maize Enhancer of zeste (Mez) homologs. Plant J 49:325–337CrossRefPubMedGoogle Scholar
  28. Hsieh TF, Fischer RL (2005) Biology of chromatin dynamics. Annu Rev Plant Biol 56:327–351CrossRefPubMedGoogle Scholar
  29. Katz A, Oliva M, Mosquna A, Hakim O, Ohad N (2004) FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J 37:707–719CrossRefPubMedGoogle Scholar
  30. Ketel CS, Andersen EF, Vargas ML, Suh J, Strome S, Simon JA (2005) Subunit contributions to Histone Methyltransferase activities of fly and worm Polycomb Group Complexes. Mol Cell Biol 25:6857–6868CrossRefPubMedGoogle Scholar
  31. Köhler C, Grossniklaus U (2002) Epigenetic inheritance of expression states in plant development: the role of Polycomb group proteins. Curr Opin Cell Biol 14:773–779CrossRefPubMedGoogle Scholar
  32. Köhler C, Villar CBR (2008) Programming of gene expression by Polycomb group proteins. Trends Cell Biol 18:236–243CrossRefPubMedGoogle Scholar
  33. Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 22:4804–4814CrossRefPubMedGoogle Scholar
  34. Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occuring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952CrossRefPubMedGoogle Scholar
  35. Matsukura C, Aoki K, Fukuda N, Mizoguchi T, Asamizu E, Saito T, Shibata D, Ezura H (2008) Comprehensive ressources for tomato functional genomics based on the miniature model tomato Micro-Tom. Curr Genom 9:436–443CrossRefGoogle Scholar
  36. Mayama T, Ohtsubo E, Tsuchimoto S (2003) Isolation and expression analysis of petunia CURLY LEAF-like genes. Plant Cell Physiol 44:811–819CrossRefPubMedGoogle Scholar
  37. Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O’Connor MB, Kingston RE, Simon JA (2002) Histone methyltransferase activity of a Drosophila Polycomb Group repressor complex. Cell 111:197–208CrossRefPubMedGoogle Scholar
  38. Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11:145–158CrossRefPubMedGoogle Scholar
  39. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29:e45CrossRefPubMedGoogle Scholar
  40. Schubert D, Clarenz O, Goodrich J (2005) Epigenetic control of plant development by Polycomb-group proteins. Curr Opin Plant Biol 8:553–561CrossRefPubMedGoogle Scholar
  41. Schubert D, Primavesi L, Bishopp A, Roberts G, Doonan J, Jenuwein T, Goodrich J (2006) Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J 25:4638–4649CrossRefPubMedGoogle Scholar
  42. Seymour G, Poole M, Manning K, King GJ (2008) Genetics and epigenetics of fruit development and ripening. Curr Opin Plant Biol 11:58–63CrossRefPubMedGoogle Scholar
  43. Shaw P, Dolan L (2008) Chromatin and Arabidopsis root development. Sem Cell Dev Biol 19:580–585CrossRefGoogle Scholar
  44. Spillane C, Schmid KJ, Laoueille-Duprat S, Pien S, Escobar-Restrepo J-M, Baroux C, Gagliardini V, Page DR, Wolfe KH, Grossniklaus U (2007) Positive Darwinian selection at the imprinted MEDEA locus in plants. Nature 448:349–352CrossRefPubMedGoogle Scholar
  45. Springer NM, Napoli CA, Selinger DA, Pandey R, Cone KC, Chandler VL, Kaeppler HF, Kaeppler SM (2003) Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiol 132:907–925CrossRefPubMedGoogle Scholar
  46. Télef N, Stammitti-Bert L, Mortain-Bertrand A, Maucourt M, Carde J, Rolin D, Gallusci P (2006) Sucrose deficiency delays lycopene accumulation in tomato fruit pericarp discs. Plant Mol Biol 62:453–469CrossRefPubMedGoogle Scholar
  47. Teyssier E, Bernacchia G, Maury S, How Kit A, Stammitti-Bert L, Rolin D, Gallusci P (2008) Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening. Planta 228:391–399CrossRefPubMedGoogle Scholar
  48. Tie F, Furuyama T, Prasad-Sinha J, Jane E, Harte PJ (2001) The Drosophila Polycomb Group proteins ESC and E(Z) are present in a complex containing the histone-binding protein p55 and the histone deacetylase RPD3. Development 128:275–286PubMedGoogle Scholar
  49. Van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence Tag collection and selective genomic sequencing. Plant Cell 14:1441–1456CrossRefPubMedGoogle Scholar
  50. Vermaak D, Ahmad K, Henikoff S (2003) Maintenance of chromatin states: an open-and-shut case. Curr Opin Cell Biol 15:266–274CrossRefPubMedGoogle Scholar
  51. von Arnim AG, Deng XW, Stacey MG (1998) Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene 221:35–43CrossRefGoogle Scholar
  52. Xu L, Shen W-H (2008) Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis. Curr Biol 18:1966–1971CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • A. How Kit
    • 1
    • 2
  • L. Boureau
    • 1
    • 2
  • L. Stammitti-Bert
    • 1
    • 2
  • D. Rolin
    • 1
    • 2
  • E. Teyssier
    • 1
    • 2
  • P. Gallusci
    • 1
    • 2
  1. 1.UMR Biologie du fruit (UMR 619), INRAUniversités Bordeaux 1 et Bordeaux 2Villenave d’Ornon CedexFrance
  2. 2.Université de Bordeaux 1BordeauxFrance

Personalised recommendations