Plant Molecular Biology

, Volume 72, Issue 3, pp 279–299 | Cite as

Comparative transcript analyses of the ovule, microspore, and mature pollen in Brassica napus

  • Carrie A. Whittle
  • Meghna R. Malik
  • Rong Li
  • Joan E. Krochko


Transcriptome data for plant reproductive organs/cells currently is very limited as compared to sporophytic tissues. Here, we constructed cDNA libraries and obtained ESTs for Brassica napus pollen (4,864 ESTs), microspores (i.e., early stage pollen development; 6,539 ESTs) and ovules (10,468 ESTs). Clustering and assembly of the 21,871 ESTs yielded a total of 10,782 unigenes, with 3,362 contigs and 7,420 singletons. The pollen transcriptome contained high levels of polygalacturonases and pectinesterases, which are involved in cell wall synthesis and expansion, and very few transcription factors or transcripts related to protein synthesis. The set of genes expressed in mature pollen showed little overlap with genes expressed in ovules or in microspores, suggesting in the latter case that a marked differentiation had occurred from the early microspore stages through to pollen development. Remarkably, the microspores and ovules exhibited a high number of co-expressed genes (N = 1,283) and very similar EST functional profiles, including high transcript numbers for transcriptional and translational processing genes, protein modification genes and unannotated genes. In addition, examination of expression values for genes co-expressed among microspores and ovules revealed a highly statistically significant correlation among these two tissues (R = 0.360, P = 1.2 × 10−40) as well as a lack of differentially expressed genes. Overall, the results provide new insights into the transcriptional profile of rarely studied ovules, the transcript changes during pollen development, transcriptional regulation of pollen tube growth and germination, and describe the parallels in the transcript populations of microspore and ovules which could have implications for understanding the molecular foundation of microspore totipotency in B. napus.


Pollen Microspores Ovules Transcriptome Brassica napus 



This work was funded by the National Research Council of Canada Genomics and Health Initiative (CAW and JEK) and the Genome Prairie program “Enhancing Canola through Genomics” funded by Genome Canada (MRM and JEK). We appreciate the advice, discussions and materials provided by Dr. Alison Ferrie for microspore embryogenesis, the technical assistance provided by Ning Zhou, and the extensive secondary review of the unigene contigs by Tania Castillo-Pelayo. This paper is Natural Research Council of Canada publication number 50138.

Supplementary material

11103_2009_9567_MOESM1_ESM.xls (4.2 mb)
Supplementary material 1 (XLS 4350 kb)
11103_2009_9567_MOESM2_ESM.doc (103 kb)
Supplementary material 2 (DOC 103 kb)


  1. Akashi H (2001) Gene expression and molecular evolution. Curr Opin Genet Dev 11:660–666CrossRefPubMedGoogle Scholar
  2. Allen RL, Lonsdale DM (1993) Molecular characterization of one of the maize polygalacturonase gene family members which are expressed during late pollen development. Plant J 3:261–271CrossRefPubMedGoogle Scholar
  3. Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichromes. Plant J 24:457–466CrossRefPubMedGoogle Scholar
  4. Barakat A, Szick-Miranda K, Chang IF, Guyot R, Blanc G, Cooke R, Delseny M, Bailey-Serres J (2001) The organization of cytoplasmic ribosomal protein genes in the Arabidopsis genome. Plant Physiol 127:398–415CrossRefPubMedGoogle Scholar
  5. Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725CrossRefPubMedGoogle Scholar
  6. Bernasconi G, Ashman TL, Birkhead TR, Bishop JD, Grossniklaus U, Kubli E, Marshall DL, Schmid B, Skogsmyr I, Snook RR, Taylor D, Till-Bottraud I, Ward PI, Zeh DW, Hellriegel B (2004) Evolutionary ecology of the prezygotic stage. Science 303:971–975CrossRefPubMedGoogle Scholar
  7. Bonaldo MF, Lennon G, Soares MB (1996) Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res 6:791–806CrossRefPubMedGoogle Scholar
  8. Botella MA, Quesada MA, Kononowicz AK, Bressan RA, Pliego F, Hasegawa PM, Valpuesta V (1994) Characterization and in situ localization of a salt-induced tomato peroxidase mRNA. Plant Mol Biol 25:105–114CrossRefPubMedGoogle Scholar
  9. Boutilier K, Fiers M, Liu CM, van Der Geest AHM (2006) Biochemical and molecular aspects of haploid embryogenesis. In: Palmer CE, Keller WA, Kasha JK (eds) Haploids in crop improvement II, vol 56. Springer, Heidelberg, pp 73–95CrossRefGoogle Scholar
  10. Burgeff C, Liljegren SJ, Tapia-Lopez R, Yanofsky MF, Alvarez-Buylla ER (2002) MADS box gene expression in lateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots. Planta 214:365–372CrossRefPubMedGoogle Scholar
  11. Chang IF, Szick-Miranda K, Pan S, Bailey-Serres J (2005) Proteomic characterization of evolutionarily conserved and variable proteins of Arabidopsis cytosolic ribosomes. Plant Physiol 137:848–862CrossRefPubMedGoogle Scholar
  12. Creswell JE (1999) The influence of nectar and pollen availability on pollen transfer by individual flowers of oil-seed rape (Brassica napus) when pollinated by bumblebees (Bombus lapidaries). J Ecology 87:670–677CrossRefGoogle Scholar
  13. da Costa-Nunes JA, Grossniklaus U (2003) Unveiling the gene expression profile of pollen. Genome Biol 5:205CrossRefPubMedGoogle Scholar
  14. Degenhardt RF, Bonham-Smith PC (2008) Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are disparately required for normal development. Plant Physiol 147:128–142CrossRefPubMedGoogle Scholar
  15. Drews GN, Yadegari R (2002) Development and function of the angiosperm female gametophyte. Ann Rev Genet 36:99–124CrossRefPubMedGoogle Scholar
  16. Duret L, Mouchiroud D (1999) Expression pattern and, surprisingly, gene length shade codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci USA 96:4482–4487CrossRefPubMedGoogle Scholar
  17. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred.I. Accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  18. Feijo JA, Sainhas J, Holdaway-Clarke T, Cordeiro MS, Kunkel JG, Hepler PK (2001) Cellular oscillations and the regulation of growth: the pollen tube paradigm. Bioessays 23:86–94CrossRefPubMedGoogle Scholar
  19. Ferrie AMR (2003) Microspore culture of Brassica species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants, a manual. Kluwer, Dordrecht, pp 205–215Google Scholar
  20. Figueroa P, Gusmaroli G, Serino G, Habashi J, Ma L, Shen Y, Feng S, Bostick M, Callis J, Hellmann H, Deng XW (2005) Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo. Plant Cell 17:1180–1195CrossRefPubMedGoogle Scholar
  21. Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375CrossRefPubMedGoogle Scholar
  22. Garcίa-Hernández M, Murphy A, Taiz L (1998) Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol 118:387–397CrossRefGoogle Scholar
  23. Goldberg RB, de Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614CrossRefPubMedGoogle Scholar
  24. Grasser KD (2003) Chromatin-associated HMGA and HMGB proteins: versatile co-regulators of DNA-dependent processes. Plant Mol Biol 53:281–295CrossRefPubMedGoogle Scholar
  25. Guo WJ, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159:369–381CrossRefGoogle Scholar
  26. Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo J (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21:2568–2569CrossRefPubMedGoogle Scholar
  27. Haecker A, Groß-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during embryonic patterning in Arabidopsis thaliana. Development 131:657–668CrossRefPubMedGoogle Scholar
  28. Hedhly A, Hormaza JI, Herrero M (2005) Influence of genotype–temperature interaction on pollen performance. J Evol Biol 6:1494–1502CrossRefGoogle Scholar
  29. Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884CrossRefPubMedGoogle Scholar
  30. Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652CrossRefPubMedGoogle Scholar
  31. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85CrossRefPubMedGoogle Scholar
  32. Hosp J, Maraschin SF, Touraev A, Boutilier K (2007) Functional genomics of microspore embryogenesis. Euphytica 158:275–285CrossRefGoogle Scholar
  33. Huang X, Madan A (1999) CAP3, a DNA sequence assembly program. Genome Res 9:868–877CrossRefPubMedGoogle Scholar
  34. Huang S, McDowell JM, Weise MJ, Meagher RB (1996) The Arabidopsis profilin gene family. Evidence for an ancient split between constitutive and pollen-specific profilin genes. Plant Physiol 111:115–126CrossRefPubMedGoogle Scholar
  35. Ito T, Kim G-T, Shinozaki K (2000) Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J 3:257–264CrossRefGoogle Scholar
  36. Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596CrossRefPubMedGoogle Scholar
  37. Johnston AJ, Meier P, Gheyselinck J, Wuest SEJ, Federer M, Schlagenhauf E, Becker JD, Grossniklaus U (2007) Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte. Genome Biol 8:R204CrossRefPubMedGoogle Scholar
  38. Jones-Rhoades MW, Borevitz JO, Preuss D (2007) Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLoS Genetics 3:e171CrossRefGoogle Scholar
  39. Joosen R, Cordewener J, Supena EDJ, Vorst O, Lammers M, Maliepaard C, Zeilmaker T, Miki B, America T, Custers J, Boutilier K (2007) Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development. Plant Physiol 144:155–172CrossRefPubMedGoogle Scholar
  40. Keller WA, Arnison PG, Cardy BJ (1987) Haploids from gametophytic cells-recent developments and future prospects. In: Green CE, Somers DA, Hackett WP, Biesboer DD (eds) Plant tissue and cell culture. Alan R Liss, New York, pp 223–241Google Scholar
  41. Kerim T, Imin N, Weinman JJ, Rolfe BG (2003) Proteome analysis of male gametophyte development in rice anthers. Proteomics 3:738–751CrossRefPubMedGoogle Scholar
  42. Kondrashov AS (1998) Measuring spontaneous deleterious mutation process. Genetica 102/103:183–197Google Scholar
  43. Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228PubMedGoogle Scholar
  44. Lai CP, Lee CL, Chen PH, Wu SH, Yang CC, Shaw JF (2004) Molecular analyses of the Arabidopsis TUBBY-like protein gene family. Plant Physiol 134:1586–1597CrossRefPubMedGoogle Scholar
  45. Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146:748–761CrossRefPubMedGoogle Scholar
  46. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  47. Malik MR, Wang F, Dirpaul JM, Zhou N, Polowick PL, Ferrie AMR, Krochko JE (2007) Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol 144:134–154CrossRefPubMedGoogle Scholar
  48. Mangus DA, Evans MC, Jacobson A (2003) Poly (A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 4:223CrossRefPubMedGoogle Scholar
  49. Maraschin SF, Caspers M, Potokina E, Wulfert F, Graner A, Spaink HP, Wang M (2006) cDNA array analysis of stress-induced gene expression in barley androgenesis. Physiol Plant 127:535–550CrossRefGoogle Scholar
  50. Mascarenhas JP (1989) The male gametophyte of flowering plants. Plant Cell 1:657–664CrossRefPubMedGoogle Scholar
  51. Mewes HW, Frishman D, Guldener U, Mannhaupt G, Mayer K, Mokrejs M, Morgenstern B, Munsterkotter M, Rudd S, Weil B (2002) MIPS: a database for genomes and protein sequences. Nucleic Acids Res 30:31–34CrossRefPubMedGoogle Scholar
  52. Miesel L, Fonseca B, González S, Baeza-Yates R, Cambiazo V, Campos R, Gonzalez M, Orellana A, Retamales J, Silva H (2005) A rapid and efficient method for purifying high quality total RNA from peaches (Prunus persica) for functional genomics analyses. Biol Res 38:83–88Google Scholar
  53. Mulcahy DL, Sari-Gorla M, Mulcahy GB (1996) Pollen selection: past, present and future. Sex Plant Reprod 9:353–356CrossRefGoogle Scholar
  54. Noir S, Bräutigam A, Colby T, Schmidt J, Panstruga R (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Commun 337:1257–1266CrossRefPubMedGoogle Scholar
  55. Pertl M, Hauser TP, Damgaard C, Jorgensen RB (2002) Male fitness of oilseed rape (Brassica napus), weedy B. rapa and their F1 hybrids when pollinating B. rapa seeds. Heredity 89:212–218CrossRefPubMedGoogle Scholar
  56. Pina C, Pinto F, Feijό JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756CrossRefPubMedGoogle Scholar
  57. Reagin MJ, Giesler TL, Merla AL, Resetar-Gerke JM, Kapolka KM, Mamone JA (2003) Templiphi: a sequencing template preparation procedure that eliminates overnight cultures and DNA purification. J Biomol Tech 14:143–148PubMedGoogle Scholar
  58. Reddy AS, Day IS (2001) Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biol 2:research0024.1–0024.17Google Scholar
  59. Romualdi C, Bortoluzzi S, D’Alessi F, Danieli GA (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics 12:159–162PubMedGoogle Scholar
  60. Rudd S (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci 8:321–329CrossRefPubMedGoogle Scholar
  61. Sakamoto H, Araki T, Meshi T, Iwabuchi M (2000) Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene 248:23–32CrossRefPubMedGoogle Scholar
  62. Schindler U, Beckmann H, Cashmore AR (1992) TGA1 and G-Box binding factors: two distinct classes of Arabidopsis leucine zipper proteins compete for the G-box-like element TGACGTGG. Plant Cell 4:1309–1319CrossRefPubMedGoogle Scholar
  63. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506CrossRefPubMedGoogle Scholar
  64. Seki H, Ulker B, Jorda L, Parker J, Somssich I (2003) A highly composite gene WRKY19 may play an important role in defense signaling in Arabidopsis thaliana. Nippon Bunshi Seibutsu Gakkai Nenkai Puroguramu, Koen Yoshishu 26:619Google Scholar
  65. Sheoran IS, Sproule KA, Olson DJH, Ross ARS, Sawhney VK (2006) Proteome profile and functional classification of proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen. Sex Plant Reprod 19:185–196CrossRefGoogle Scholar
  66. Sigova A, Rhind N, Zamore PD (2004) A single Argonaute protein mediates both transcriptional and posttranscriptional silencing in Schizosaccharomyces pombe. Genes Dev 18:2359–2367CrossRefPubMedGoogle Scholar
  67. Sprunck S, Baumann U, Edwards K, Langridge P, Dresselhaus T (2005) The transcript composition of egg cells changes significantly following fertilization in wheat (Triticum aestivum L.). Plant J 41:660–672CrossRefPubMedGoogle Scholar
  68. Stekel DJ, Git Y, Falciani F (2000) The comparison of gene expression from multiple cDNA libraries. Genome Res 10:2055–2061CrossRefPubMedGoogle Scholar
  69. Subramanian S, Kumar S (2004) Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome. Genetics 168:373–381CrossRefPubMedGoogle Scholar
  70. Tariq M, Habu Y, Paszkowski J (2002) Depletion of MOM1 in non-dividing cells of Arabidopsis plants releases transcriptional gene silencing. EMBO Reports 3:951–955CrossRefPubMedGoogle Scholar
  71. Tsukagoshi H, Morikami A, Nakamura K (2007) Two B3 domain transcriptional repressors prevent sugar-inducible expression of seed maturation genes in Arabidopsis seedlings. Proc Natl Acad Sci USA 104:2543–2547CrossRefPubMedGoogle Scholar
  72. Tung CW, Dwyer KG, Nasrallah ME, Nasrallah JB (2005) Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiol 138:977–989CrossRefPubMedGoogle Scholar
  73. Van der Knaap E, Jagoueix S, Kende H (1997) Expression of an ortholog of replication protein A1 (RPA1) is induced by gibberellin in deepwater rice. Proc Natl Acad Sci USA 94:9979–9983CrossRefPubMedGoogle Scholar
  74. Verdeil J-L, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy. Trends Plant Sci 12:245–252CrossRefPubMedGoogle Scholar
  75. Wang C-S, Vodkin LO (1994) Extraction of RNA from tissues containing high levels of procyanidins that bind RNA. Plant Mol Biol Rep 12:132–145CrossRefGoogle Scholar
  76. Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692CrossRefPubMedGoogle Scholar
  77. Waterborg JH (1993) Histone synthesis and turnover in alfalfa. Fast loss of highly acetylated replacement histone variant H3.2. J Biol Chem 268:4912–4917PubMedGoogle Scholar
  78. Whittle CA, Krochko JE (2009) Transcript profiling provides evidence of functional divergence and expression networks among ribosomal protein gene paralogs in Brassica napus. Plant Cell 21:2203–2219CrossRefPubMedGoogle Scholar
  79. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718CrossRefPubMedGoogle Scholar
  80. Wright SI, Lauga B, Charlesworth D (2002) Rates and patterns of molecular evolution in inbred and outbred Arabidopsis. Mol Biol Evol 19:1407–1420PubMedGoogle Scholar
  81. Wright SI, Yau CBK, Looseley M, Meyers BC (2004) Effects of gene expression on molecular evolution in Arabidopsis thaliana and Arabidopsis lyrata. Mol Biol Evol 21:1719–1726CrossRefPubMedGoogle Scholar
  82. Yang H, Kaur N, Kiriakopolos S, McCormick S (2006) EST generation and analyses towards identifying female gametophyte-specific genes in Zea mays L. Planta 224:1004–1014CrossRefPubMedGoogle Scholar
  83. Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q et al (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124CrossRefPubMedGoogle Scholar
  84. Zhou J, Goldsbrough PB (1995) Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol Gen Genet 248:318–328CrossRefPubMedGoogle Scholar
  85. Zhou C, Miki B, Wu K (2003) CHB2, a member of the SWI3 gene family, is a global regulator in Arabidopsis. Plant Mol Biol 52:1125–1134CrossRefPubMedGoogle Scholar
  86. Ziolkowski PA, Kaczmarek M, Babula D, Sadowski J (2006) Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. Plant J 47:63–74CrossRefPubMedGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2009

Authors and Affiliations

  • Carrie A. Whittle
    • 1
  • Meghna R. Malik
    • 1
    • 2
  • Rong Li
    • 1
  • Joan E. Krochko
    • 1
  1. 1.Plant Biotechnology Institute, National Research Council of CanadaSaskatoonCanada
  2. 2.Agrisoma Biosciences Inc.SaskatoonCanada

Personalised recommendations