Plant Molecular Biology

, Volume 70, Issue 6, pp 669–679 | Cite as

Targeted mutagenesis in the progeny of maize transgenic plants

  • Meizhu Yang
  • Vesna Djukanovic
  • Jessica Stagg
  • Brian Lenderts
  • Dennis Bidney
  • S. Carl Falco
  • L. Alexander Lyznik


We have demonstrated that targeted mutagenesis can be accomplished in maize plants by excision, activation, and subsequent elimination of an endonuclease in the progeny of genetic crosses. The yeast FLP/FRT site-specific recombination system was used to excise and transiently activate the previously integrated yeast I-SceI homing endonuclease in maize zygotes and/or developing embryos. An artificial I-SceI recognition sequence integrated into genomic DNA was analyzed for mutations to indicate the I-SceI endonuclease activity. Targeted mutagenesis of the I-SceI site occurred in about 1% of analyzed F1 plants. Short deletions centered on the I-SceI-produced double-strand break were the predominant genetic lesions observed in the F1 plants. The I-SceI expression cassette was not detected in the mutant F1 plants and their progeny. However, the original mutations were faithfully transmitted to the next generation indicating that the mutations occurred early during the F1 plant development. The procedure offers simultaneous production of double-strand breaks and delivery of DNA template combined with a large number of progeny plants for future gene targeting experiments.


Double-strand break I-SceMutation Transgenic plant Maize Zea mays



The authors thank Shifu Zhen and Susan Nilles for technical assistance in producing transgenic plants. We acknowledge Carl Simmons’ contribution to this work by designing the maize codon-optimized I-SceI. We thank Cellectis, S.A. for providing the I-Sce endonuclease and for helpful research discussions.

Novel materials described in this publication may be available for non-commercial research purposes upon acceptance and signing of a material transfer agreement. In some cases such materials may contain or be derived from materials obtained from a third party. In such cases, distribution of material will be subject to the requisite permission from any third-party owners, licensors or controllers of all or parts of the material. Plant germplasm and transgenic material will not be made available except at the discretion of the owner and then only in accordance with all applicable governmental regulations. Obtaining any permissions will be the sole responsibility of the requestor.


  1. An G, Mitra A, Choi HK, Costa MA, An K, Thornburg RW, Ryan CA (1989) Functional analysis of the 3′ control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1:115–122PubMedCrossRefGoogle Scholar
  2. Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, Grizot S, Epinat JC, Duclert A, Duchateau P, Paques F (2007) Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371:49–65. doi: 10.1016/j.jmb.2007.04.079 PubMedCrossRefGoogle Scholar
  3. Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D (2006) Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172:2391–2403. doi: 10.1534/genetics.105.052829 PubMedCrossRefGoogle Scholar
  4. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175PubMedGoogle Scholar
  5. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764. doi: 10.1126/science.1079512 PubMedCrossRefGoogle Scholar
  6. Carroll D, Beumer KJ, Morton JJ, Bozas A, Trautman JK (2008) Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods Mol Biol 435:63–77. doi: 10.1007/978-1-59745-232-8_5 PubMedCrossRefGoogle Scholar
  7. Cheng P-C, Pareddy DR (1994) Morphology and development of the tassel and ear. In: Freeling M, Walbot V (eds) The maize handbook. Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, pp 37–47Google Scholar
  8. Chiurazzi M, Ray A, Viret JF, Perera R, Wang XH, Lloyd AM, Signer ER (1996) Enhancement of somatic intrachromosomal homologous recombination in Arabidopsis by the HO endonuclease. Plant Cell 8:2057–2066PubMedCrossRefGoogle Scholar
  9. Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973PubMedGoogle Scholar
  10. Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung JK, Cathomen T (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther 16:352–358. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  11. D’Halluin K, Vanderstraeten C, Stals E, Cornelissen M, Ruiter R (2008) Homologous recombination: a basis for targeted genome optimization in crop species such as maize. Plant Biotechnol J 6:93–102PubMedGoogle Scholar
  12. Djukanovic V, Orczyk W, Gao H, Sun X, Garrett N, Zhen S, Gordon-Kamm W, Barton J, Lyznik LA (2006) Gene conversion in transgenic maize plants expressing FLP/FRT and Cre/loxP site-specific recombination systems. Plant Biotechnol J 4:345–357. doi: 10.1111/j.1467-7652.2006.00186.x PubMedCrossRefGoogle Scholar
  13. Djukanovic V, Lenderts B, Bidney D, Lyznik LA (2008) A Cre:FLP fusion protein recombines FRT or loxP sites in transgenic maize plants. Plant Biotechnol J 6:770–781. doi: 10.1111/j.1467-7652.2008.00357.x PubMedCrossRefGoogle Scholar
  14. Doyon JB, Pattanayak V, Meyer CB, Liu DR (2006) Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J Am Chem Soc 128:2477–2484. doi: 10.1021/ja057519l PubMedCrossRefGoogle Scholar
  15. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708. doi: 10.1038/nbt1409 PubMedCrossRefGoogle Scholar
  16. Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Paques F, Lacroix E (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31:2952–2962. doi: 10.1093/nar/gkg375 PubMedCrossRefGoogle Scholar
  17. Gao H, Yang M, Falco SC, Lyznik A (2008) Locus-specific mutations induced by homing endonucleases in maize. FAO/IAEA International Symposium on induced mutations in plants. Vienna, Austria, pp 86Google Scholar
  18. Gidoni D, Bar M, Leshem B, Gilboa N, Mett A, Feiler J (2001) Embryonal recombination and germline inheritance of recombined FRT loci mediated by constitutively expressed FLP in tobacco. Euphytica 121:145–156. doi: 10.1023/A:1012081125631 CrossRefGoogle Scholar
  19. Gisler B, Salomon S, Puchta H (2002) The role of double-strand break-induced allelic homologous recombination in somatic plant cells. Plant J 32:277–284. doi: 10.1046/j.1365-313X.2002.01421.x PubMedCrossRefGoogle Scholar
  20. Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102:2232–2237. doi: 10.1073/pnas.0409339102 PubMedCrossRefGoogle Scholar
  21. Lyznik LA, McGee JD, Tung PY, Bennetzen JL, Hodges TK (1991) Homologous recombination between plasmid DNA molecules in maize protoplasts. Mol Gen Genet 230:209–218. doi: 10.1007/BF00290670 PubMedCrossRefGoogle Scholar
  22. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301. doi: 10.1016/j.molcel.2008.06.016 PubMedCrossRefGoogle Scholar
  23. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973. doi: 10.1038/13657 PubMedCrossRefGoogle Scholar
  24. McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Mol Gen Genet 231:150–160. doi: 10.1007/BF00293832 PubMedCrossRefGoogle Scholar
  25. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701. doi: 10.1038/nbt1398 PubMedCrossRefGoogle Scholar
  26. Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA 104:3055–3060. doi: 10.1073/pnas.0611478104 PubMedCrossRefGoogle Scholar
  27. Morton J, Davis MW, Jorgensen EM, Carroll D (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci USA 103:16370–16375. doi: 10.1073/pnas.0605633103 PubMedCrossRefGoogle Scholar
  28. Orel N, Kyryk A, Puchta H (2003) Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J 35:604–612. doi: 10.1046/j.1365-313X.2003.01832.x PubMedCrossRefGoogle Scholar
  29. Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763. doi: 10.1126/science.1078395 PubMedCrossRefGoogle Scholar
  30. Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56:1–14. doi: 10.1093/jxb/eri123 PubMedCrossRefGoogle Scholar
  31. Redondo P, Prieto J, Munoz IG, Alibes A, Stricher F, Serrano L, Cabaniols JP, Daboussi F, Arnould S, Perez C, Duchateau P, Paques F, Blanco FJ, Montoya G (2008) Molecular basis of Xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456:107–111. doi: 10.1038/nature07343 PubMedCrossRefGoogle Scholar
  32. Rong YS, Titen SW, Xie HB, Golic MM, Bastiani M, Bandyopadhyay P, Olivera BM, Brodsky M, Rubin GM, Golic KG (2002) Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev 16:1568–1581. doi: 10.1101/gad.986602 PubMedCrossRefGoogle Scholar
  33. Rosen LE, Morrison HA, Masri S, Brown MJ, Springstubb B, Sussman D, Stoddard BL, Seligman LM (2006) Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res 34:4791–4800. doi: 10.1093/nar/gkl645 PubMedCrossRefGoogle Scholar
  34. Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106PubMedGoogle Scholar
  35. Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–6095. doi: 10.1093/emboj/17.20.6086 PubMedCrossRefGoogle Scholar
  36. Sorrell DA, Kolb AF (2005) Targeted modification of mammalian genomes. Biotechnol Adv 23:431–469. doi: 10.1016/j.biotechadv.2005.03.003 PubMedCrossRefGoogle Scholar
  37. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793. doi: 10.1038/nbt1317 PubMedCrossRefGoogle Scholar
  38. Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29:52–54PubMedGoogle Scholar
  39. Ugaki M, Ueda T, Timmermans MC, Vieira J, Elliston KO, Messing J (1991) Replication of a geminivirus derived shuttle vector in maize endosperm cells. Nucleic Acids Res 19:371–377. doi: 10.1093/nar/19.2.371 PubMedCrossRefGoogle Scholar
  40. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651. doi: 10.1038/nature03556 PubMedCrossRefGoogle Scholar
  41. Vanderschuren H, Stupak M, Futterer J, Gruissem W, Zhang P (2007) Engineering resistance to geminiviruses–review and perspectives. Plant Biotechnol J 5:207–220. doi: 10.1111/j.1467-7652.2006.00217.x PubMedCrossRefGoogle Scholar
  42. Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705. doi: 10.1111/j.1365-313X.2005.02551.x PubMedCrossRefGoogle Scholar
  43. Xiao YL, Li X, Peterson T (2000) Ac insertion site affects the frequency of transposon-induced homologous recombination at the maize p1 locus. Genetics 156:2007–2017PubMedGoogle Scholar
  44. Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107:1157–1168. doi: 10.1007/s00122-003-1368-z PubMedCrossRefGoogle Scholar
  45. Zhao X, Coats I, Fu P, Gordon-Kamm B, Lyznik LA (2003) T-DNA recombination and replication in maize cells. Plant J 33:149–159. doi: 10.1046/j.1365-313X.2003.016016.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Meizhu Yang
    • 1
  • Vesna Djukanovic
    • 1
  • Jessica Stagg
    • 1
  • Brian Lenderts
    • 1
  • Dennis Bidney
    • 1
  • S. Carl Falco
    • 1
  • L. Alexander Lyznik
    • 1
    • 2
  1. 1.Pioneer Hi-Bred International, A DuPont BusinessResearch CenterJohnstonUSA
  2. 2.Crop Genetics Research and DevelopmentDuPont Agriculture & NutritionJohnstonUSA

Personalised recommendations