Advertisement

Plant Molecular Biology

, Volume 70, Issue 6, pp 627–646 | Cite as

Transcriptome analysis of a bacterially induced basal and hypersensitive response of Medicago truncatula

  • Zoltán Bozsó
  • Nicolas Maunoury
  • Agnes Szatmari
  • Peter Mergaert
  • Péter G. Ott
  • László R. Zsíros
  • Erika Szabó
  • Éva Kondorosi
  • Zoltán Klement
Article

Abstract

Research using the well-studied model legume Medicago truncatula has largely focused on rhizobium symbiosis, while little information is currently available for this species on pathogen-induced transcriptome changes. We have performed a transcriptome analysis of this species with the objective of studying the basal (BR, no visible symptoms) and hypersensitive response (HR, plant cell death) in its leaves at 6 and at 24 h after infection by HR-negative (hrcC mutant) and HR-inducing Pseudomonas syringae pv. syringae strains, respectively. Although there were no visible symptoms at the BR, the alterations in gene expression were comparable to those found with the HR. Both responses resulted in the transcriptional alteration of hundreds of plant genes; however, the responses in the HR were usually more intense. The reactions to HR-inducing and HR-negative bacterial strains were significantly overlapping. Parallel up- or down-regulation of genes with the same function occurred frequently. However, some plant processes were regulated in one direction; for example, most of the protein synthesis-related genes were activated and all of the photosynthetic/chloroplast genes were suppressed during BR. The possible roles of several functional classes (e.g., cell rescue, signaling, defense, cell death, etc.) of transcriptionally altered genes are discussed. The results of the comparison with available mycorrhizal and nodule expression data show that there is a significant overlap between nodulation and the leaf defense response and that during the early stage of the nodulation in roots, Sinorhizobium meliloti induces a fluctuation in the transcription of BR- and HR-responsive genes.

Keywords

Basal resistance Medicago truncatula Microarray Mycorrhiza Nodulation Pseudomonas syringae 

Notes

Acknowledgments

This research was supported by grants of the Hungarian National Science Foundation, AT-049318 and K68386. We thank the GODMAP platform (Gif-sur-Yvette, France) for the use of their microarray facilities.

Supplementary material

11103_2009_9496_MOESM1_ESM.xls (3.5 mb)
(XLS 3605 kb)
11103_2009_9496_MOESM2_ESM.xls (186 kb)
(XLS 186 kb)
11103_2009_9496_MOESM3_ESM.pdf (51 kb)
(PDF 51 kb)
11103_2009_9496_MOESM4_ESM.pdf (64 kb)
(PDF 63 kb)
11103_2009_9496_MOESM5_ESM.pdf (141 kb)
(PDF 140 kb)
11103_2009_9496_MOESM6_ESM.xls (98 kb)
(XLS 97 kb)
11103_2009_9496_MOESM7_ESM.xls (56 kb)
(XLS 56 kb)

References

  1. Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414. doi: 10.1146/annurev.phyto.42.040103.110731 CrossRefPubMedGoogle Scholar
  2. Bantignies B, Seguin J, Muzac I, Dedaldechamp F, Gulick P, Ibrahim R (2000) Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol Biol 42:871–881. doi: 10.1023/A:1006475303115 CrossRefPubMedGoogle Scholar
  3. Bardwell L (2005) A walk-through of the yeast mating pheromone response pathway. Peptides 26:339–350. doi: 10.1016/j.peptides.2004.10.002 CrossRefPubMedGoogle Scholar
  4. Belenghi B, Acconcia F, Trovato M, Perazzolli M, Bocedi A, Polticelli F, Ascenzi P, Delledonne M (2003) AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur J Biochem 270:2593–2604. doi: 10.1046/j.1432-1033.2003.03630.x CrossRefPubMedGoogle Scholar
  5. Bestwick CS, Bennett MH, Mansfield JW (1995) Hrp mutant of Pseudomonas syringae pv. phaseolicola induces cell wall alterations but not membrane damage leading to the HR in lettuce (Lactuca sativa). Plant Physiol 108:503–516PubMedGoogle Scholar
  6. Bozsó Z, Ott PG, Kecskés ML, Klement Z (1999) Effect of heat and cycloheximide treatment of tobacco on the ability of Pseudomonas syringae pv. syringae 61 hrp/hrmA mutants to cause HR. Physiol Mol Plant Pathol 55:215–223. doi: 10.1006/pmpp.1999.0225 CrossRefGoogle Scholar
  7. Bozsó Z, Ott PG, Szatmari A, Czelleng A, Varga G, Besenyei E, Sárdi E, Bányai E, Klement Z (2005) Early detection of bacterium-induced basal resistance in tobacco leaves with diaminobenzidine and dichlorofluorescein diacetate. J Phytopathol 153:596–607. doi: 10.1111/j.1439-0434.2005.01026.x CrossRefGoogle Scholar
  8. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371. doi: 10.1038/ng1201-365 CrossRefPubMedGoogle Scholar
  9. Brechenmacher L, Weidmann S, van Tuinen D, Chatagnier O, Gianinazzi S, Franken P, Gianinazzi-Pearson V (2004) Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions. Mycorrhiza 14:253–262. doi: 10.1007/s00572-003-0263-4 CrossRefPubMedGoogle Scholar
  10. Breda C, Sallaud C, el-Turk J, Buffard D, de Kozak I, Esnault R, Kondorosi A (1996) Defense reaction in Medicago sativa: a gene encoding a class 10 PR protein is expressed in vascular bundles. Mol Plant Microbe Interact 9:713–719PubMedGoogle Scholar
  11. Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573:83–92. doi: 10.1016/j.febslet.2004.07.055 CrossRefPubMedGoogle Scholar
  12. Carimi F, Zottini M, Formentin E, Terzi M, Lo Schiavo F (2003) Cytokinins: new apoptotic inducers in plants. Planta 216:413–421PubMedGoogle Scholar
  13. Chen C, Wanduragala S, Becker DF, Dickman MB (2006) Tomato QM-like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels. Appl Environ Microbiol 72:4001–4006. doi: 10.1128/AEM.02428-05 CrossRefPubMedGoogle Scholar
  14. de Torres M, Sanchez P, Fernandez-Delmond I, Grant M (2003) Expression profiling of the host response to bacterial infection: the transition from basal to induced defence responses in RPM1-mediated resistance. Plant J 33:665–676. doi: 10.1046/j.1365-313X.2003.01653.x CrossRefPubMedGoogle Scholar
  15. Deguchi Y, Banba M, Shimoda Y, Chechetka SA, Suzuri R, Okusako Y, Ooki Y, Toyokura K, Suzuki A, Uchiumi T, Higashi S, Abe M, Kouchi H, Izui K, Hata S (2007) Transcriptome profiling of Lotus japonicus roots during arbuscular mycorrhiza development and comparison with that of nodulation. DNA Res 14:117–133. doi: 10.1093/dnares/dsm014 CrossRefPubMedGoogle Scholar
  16. Dietz KJ (2003) Plant peroxiredoxins. Annu Rev Plant Biol 54:93–107. doi: 10.1146/annurev.arplant.54.031902.134934 CrossRefPubMedGoogle Scholar
  17. Dow M, Newman MA, von Roepenack E (2000) The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu Rev Phytopathol 38:241–261. doi: 10.1146/annurev.phyto.38.1.241 CrossRefPubMedGoogle Scholar
  18. El Yahyaoui F, Küster H, Ben Amor B, Hohnjec N, Pühler A, Becker A, Gouzy J, Vernié T, Gough C, Niebel A, Godiard L, Gamas P (2004) Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136:3159–3176. doi: 10.1104/pp.104.043612 CrossRefPubMedGoogle Scholar
  19. Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10:71–78. doi: 10.1016/j.tplants.2004.12.006 CrossRefPubMedGoogle Scholar
  20. Fedorova M, van de Mortel J, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP (2002) Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol 130:519–537. doi: 10.1104/pp.006833 CrossRefPubMedGoogle Scholar
  21. Felix G, Boller T (2003) Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol Chem 278:6201–6208. doi: 10.1074/jbc.M209880200 CrossRefPubMedGoogle Scholar
  22. Garcia-Olmedo F, Molina A, Segura A, Moreno M (1995) The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol 3:72–74. doi: 10.1016/S0966-842X(00)88879-4 CrossRefPubMedGoogle Scholar
  23. Gelbman BD, Heguy A, O’Connor TP, Zabner J, Crystal RG (2007) Upregulation of pirin expression by chronic cigarette smoking is associated with bronchial epithelial cell apoptosis. Respir Res 8:10. doi: 10.1186/1465-9921-8-10 CrossRefPubMedGoogle Scholar
  24. Gomez-Gomez L, Boller T (2002) Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7:251–256. doi: 10.1016/S1360-1385(02)02261-6 CrossRefPubMedGoogle Scholar
  25. Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201–211. doi: 10.1111/j.1462-5822.2004.00361.x CrossRefPubMedGoogle Scholar
  26. Guo A, Durner J, Klessig DF (1998) Characterization of a tobacco epoxide hydrolase gene induced during the resistance response to TMV. Plant J 15:647–656. doi: 10.1046/j.1365-313x.1998.00241.x CrossRefPubMedGoogle Scholar
  27. Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791CrossRefPubMedGoogle Scholar
  28. He X, Anderson JC, del Pozo O, Gu YQ, Tang X, Martin GB (2004) Silencing of subfamily I of protein phosphatase 2A catalytic subunits results in activation of plant defense responses and localized cell death. Plant J 38:563–577. doi: 10.1111/j.1365-313X.2004.02073.x CrossRefPubMedGoogle Scholar
  29. Herbers K, Mönke G, Badur R, Sonnewald U (1995) A simplified procedure for the subtractive cDNA cloning of photoassimilate-responding genes: isolation of cDNAs encoding a new class of pathogenesis-related proteins. Plant Mol Biol 29:1027–1038. doi: 10.1007/BF00014975 CrossRefPubMedGoogle Scholar
  30. Hirayama T, Ishida C, Kuromori T, Obata S, Shimoda C, Yamamoto M, Shinozaki K, Ohto C (1997) Functional cloning of a cDNA encoding Mei2-like protein from Arabidopsis thaliana using a fission yeast pheromone receptor deficient mutant. FEBS Lett 413:16–20. doi: 10.1016/S0014-5793(97)00871-5 CrossRefPubMedGoogle Scholar
  31. Hohnjec N, Vieweg MF, Puhler A, Becker A, Kuster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301. doi: 10.1104/pp.104.056572 CrossRefPubMedGoogle Scholar
  32. Hong JK, Hwang BK (2006) Promoter activation of pepper class II basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis. Planta 223:433–448. doi: 10.1007/s00425-005-0099-6 CrossRefPubMedGoogle Scholar
  33. Hückelhoven R (2004) BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives. Apoptosis 9:299–307. doi: 10.1023/B:APPT.0000025806.71000.1c CrossRefPubMedGoogle Scholar
  34. Jakobek JL, Lindgren PB (1993) Generalized induction of defense responses in bean is not correlated with the induction of the hypersensitive reaction. Plant Cell 5:49–56CrossRefPubMedGoogle Scholar
  35. Jones AM, Thomas V, Truman B, Lilley K, Mansfield JW, Grant M (2004) Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. Phytochemistry 65:1805–1816. doi: 10.1016/j.phytochem.2004.04.005 CrossRefPubMedGoogle Scholar
  36. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanine and fluorescein. J Lab Clin Med 22:301–307Google Scholar
  37. Klement Z (1963) Rapid detection of the pathogenicity of phytophatogenic pseudomonads. Nature 199:299–300. doi: 10.1038/199299b0 CrossRefPubMedGoogle Scholar
  38. Klement Z, Bozsó Z, Ott PG, Kecskés ML, Rudolp K (1999) Symptomless resistant response instead of the hypersensitive reaction in tobacco leaves after infiltration of heterologous pathovars of Pseudomonas syringae. J Phytopathol 147:467–475. doi: 10.1111/j.1439-0434.1999.tb03852.x CrossRefGoogle Scholar
  39. Klement Z, Bozsó Z, Kecskés ML, Besenyei E, Czelleng A, Ott PG (2003) Local early induced resistance of plants as the first line of defence against bacteria. Pest Manag Sci 59:465–474. doi: 10.1002/ps.694 CrossRefPubMedGoogle Scholar
  40. Koistinen KM, Soininen P, Venalainen TA, Hayrinen J, Laatikainen R, Perakyla M, Tervahauta AI, Karenlampi SO (2005) Birch PR-10c interacts with several biologically important ligands. Phytochemistry 66:2524–2533. doi: 10.1016/j.phytochem.2005.09.007 CrossRefPubMedGoogle Scholar
  41. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507. doi: 10.1105/tpc.104.026765 CrossRefPubMedGoogle Scholar
  42. Lapik YR, Kaufman LS (2003) The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein alpha-subunit GPA1 and regulates seed germination and early seedling development. Plant Cell 15:1578–1590. doi: 10.1105/tpc.011890 CrossRefPubMedGoogle Scholar
  43. Liu JJ, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68:3–13. doi: 10.1016/j.pmpp.2006.06.004 CrossRefGoogle Scholar
  44. Liu JY, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123. doi: 10.1105/tpc.014183 CrossRefPubMedGoogle Scholar
  45. Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544. doi: 10.1111/j.1365-313X.2007.03069.x CrossRefPubMedGoogle Scholar
  46. Lohar DP, Sharopova N, Endre G, Penuela S, Samac D, Town C, Silverstein KA, VandenBosch KA (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140:221–234. doi: 10.1104/pp.105.070326 CrossRefPubMedGoogle Scholar
  47. Mach JM, Castillo AR, Hoogstraten R, Greenberg JT (2001) The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci USA 98:771–776. doi: 10.1073/pnas.021465298 CrossRefPubMedGoogle Scholar
  48. Mackey D, McFall AJ (2006) MAMPs and MIMPs: proposed classifications for inducers of innate immunity. Mol Microbiol 61:1365–1371. doi: 10.1111/j.1365-2958.2006.05311.x CrossRefPubMedGoogle Scholar
  49. Marković-Housley Z, Degano M, Lamba D, von Roepenack-Lahaye E, Clemens S, Susani M, Ferreira F, Scheiner O, Breiteneder H (2003) Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. J Mol Biol 325:123–133. doi: 10.1016/S0022-2836(02)01197-X CrossRefPubMedGoogle Scholar
  50. Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Vaubert D, Kondorosi A, Kondorosi E (2003) A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol 132:161–173. doi: 10.1104/pp.102.018192 CrossRefPubMedGoogle Scholar
  51. Murray GI, Paterson PJ, Weaver RJ, Ewen SW, Melvin WT, Burke MD (1993) The expression of cytochrome P-450, epoxide hydrolase, and glutathione S-transferase in hepatocellular carcinoma. Cancer 71:36–43. doi: 10.1002/1097-0142(19930101)71:1<36::AID-CNCR2820710107>3.0.CO;2-J CrossRefPubMedGoogle Scholar
  52. Mysore KS, Crasta OR, Tuori RP, Folkerts O, Swirsky PB, Martin GB (2002) Comprehensive transcript profiling of Pto- and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato. Plant J 32:299–315. doi: 10.1046/j.1365-313X.2002.01424.x CrossRefPubMedGoogle Scholar
  53. Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898. doi: 10.1046/j.1365-313X.2003.01675.x CrossRefPubMedGoogle Scholar
  54. Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JD (2004) The transcriptional innate immune response to flg22. Interplay and overlap with AVR gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135:1113–1128. doi: 10.1104/pp.103.036749 CrossRefPubMedGoogle Scholar
  55. Newman JW, Morisseau C, Hammock BD (2005) Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 44:1–51. doi: 10.1016/j.plipres.2004.10.001 CrossRefPubMedGoogle Scholar
  56. Novacky A (1972) Suppression of the bacterially induced hypersensitive reaction by cytokinins. Physiol Plant Pathol 2:101–104. doi: 10.1016/S0048-4059(72)80004-3 CrossRefGoogle Scholar
  57. Oh HS, Kwon H, Sun SK, Yang CH (2002) QM, a putative tumor suppressor, regulates proto-oncogene c-yes. J Biol Chem 277:36489–36498. doi: 10.1074/jbc.M201859200 CrossRefPubMedGoogle Scholar
  58. Orzaez D, de Jong AJ, Woltering EJ (2001) A tomato homologue of the human protein PIRIN is induced during programmed cell death. Plant Mol Biol 46:459–468. doi: 10.1023/A:1010618515051 CrossRefPubMedGoogle Scholar
  59. Ott PG, Szabó L, Balázs E, Klement Z (1997) Submicroscopic evidence of bacterially induced resistance in tobacco leaves. Acta Phytopathol Entomol Hung 32:265–280Google Scholar
  60. Ott PG, Varga GJ, Szatmari A, Bozsó Z, Klement E, Medzihradszky KF, Besenyei E, Czelleng A, Klement Z (2006) Novel extracellular chitinases rapidly and specifically induced by general bacterial elicitors and suppressed by virulent bacteria as a marker of early basal resistance in tobacco. Mol Plant Microbe Interact 19:161–172. doi: 10.1094/MPMI-19-0161 CrossRefPubMedGoogle Scholar
  61. Pang H, Bartlam M, Zeng Q, Miyatake H, Hisano T, Miki K, Wong LL, Gao GF, Rao Z (2004) Crystal structure of human pirin: an iron-binding nuclear protein and transcription cofactor. J Biol Chem 279:1491–1498. doi: 10.1074/jbc.M310022200 CrossRefPubMedGoogle Scholar
  62. Pastuglia M, Swarup R, Rocher A, Saindrenan P, Roby D, Dumas C, Cock JM (2002) Comparison of the expression patterns of two small gene families of S genefamily receptor kinase genes during the defence response in Brassica oleracea and Arabidopsis thaliana. Gene 282:215–225. doi: 10.1016/S0378-1119(01)00821-6 CrossRefPubMedGoogle Scholar
  63. Pinot F, Bosch H, Alayrac C, Mioskowski C, Vendais A, Durst F, Salaun JP (1993) [omega]-hydroxylation of oleic acid in Vicia sativa microsomes (inhibition by substrate analogs and inactivation by terminal acetylenes). Plant Physiol 102:1313–1318PubMedGoogle Scholar
  64. Ruiz-Lozano JM, Roussel H, Gianinazzi S, Gianinazzi-Pearson V (1999) Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes. Mol Plant Microbe Interact 12:976–984. doi: 10.1094/MPMI.1999.12.11.976 CrossRefGoogle Scholar
  65. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378PubMedGoogle Scholar
  66. Sanmartin M, Jaroszewski L, Raikhel NV, Rojo E (2005) Caspases. Regulating death since the origin of life. Plant Physiol 137:841–847. doi: 10.1104/pp.104.058552 CrossRefPubMedGoogle Scholar
  67. Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236–243. doi: 10.1016/j.tplants.2004.03.007 CrossRefPubMedGoogle Scholar
  68. Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16. doi: 10.1042/0264-6021:3600001 CrossRefPubMedGoogle Scholar
  69. Siciliano V, Genre A, Balestrini R, Cappellazzo G, deWit PJ, Bonfante P (2007) Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. Plant Physiol 144:1455–1466. doi: 10.1104/pp.107.097980 CrossRefPubMedGoogle Scholar
  70. Sikorski MM, Biesiadka J, Kasperska AE, Kopciska J, Lotocka B, Golinowski W, Legocki AB (1999) Expression of genes encoding PR10 class pathogenesis-related proteins is inhibited in yellow lupine root nodules. Plant Sci 149:125–137. doi: 10.1016/S0168-9452(99)00148-X CrossRefGoogle Scholar
  71. Stuhlfelder C, Mueller MJ, Warzecha H (2004) Cloning and expression of a tomato cDNA encoding a methyl jasmonate cleaving esterase. Eur J Biochem 271:2976–2983. doi: 10.1111/j.1432-1033.2004.04227.x CrossRefPubMedGoogle Scholar
  72. Szatmari A, Ott PG, Varga GJ, Besenyei E, Czelleng A, Klement Z, Bozso Z (2006) Characterisation of basal resistance (BR) by expression patterns of newly isolated representative genes in tobacco. Plant Cell Rep 25:728–740. doi: 10.1007/s00299-005-0110-5 CrossRefPubMedGoogle Scholar
  73. Takemoto D, Yoshioka H, Doke N, Kawakita K (2003) Disease stress-inducible genes of tobacco: expression profile of elicitor-responsive genes isolated by subtractive hybridization. Physiol Plant 118:545–553. doi: 10.1034/j.1399-3054.2003.00145.x CrossRefGoogle Scholar
  74. Taler D, Galperin M, Benjamin I, Cohen Y, Kenigsbuch D (2004) Plant R genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16:172–184. doi: 10.1105/tpc.016352 CrossRefPubMedGoogle Scholar
  75. Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhu T, Zou G, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15:317–330. doi: 10.1105/tpc.007591 CrossRefPubMedGoogle Scholar
  76. Tellström V, Usadel B, Thimm O, Stitt M, Küster H, Niehaus K (2007) The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiol 143:825–837. doi: 10.1104/pp.106.090985 CrossRefPubMedGoogle Scholar
  77. Thilmony R, Underwood W, He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J 46:34–53. doi: 10.1111/j.1365-313X.2006.02725.x CrossRefPubMedGoogle Scholar
  78. Truman W, de Zabala MT, Grant M (2006) Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Plant J 46:14–33. doi: 10.1111/j.1365-313X.2006.02672.x CrossRefPubMedGoogle Scholar
  79. Wendler WM, Kremmer E, Förster R, Winnacker EL (1997) Identification of pirin, a novel highly conserved nuclear protein. J Biol Chem 272:8482–8489. doi: 10.1074/jbc.272.43.27091 CrossRefPubMedGoogle Scholar
  80. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632. doi: 10.1104/pp.104.046367 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Zoltán Bozsó
    • 1
  • Nicolas Maunoury
    • 2
  • Agnes Szatmari
    • 1
  • Peter Mergaert
    • 2
  • Péter G. Ott
    • 1
  • László R. Zsíros
    • 1
  • Erika Szabó
    • 1
  • Éva Kondorosi
    • 2
  • Zoltán Klement
    • 1
  1. 1.Plant Protection Institute of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Unité Propre de Recherche 2355, Institut des Sciences du VégétalCentre National de la Recherche ScientifiqueGif-sur-Yvette CedexFrance

Personalised recommendations