Advertisement

Plant Molecular Biology

, Volume 70, Issue 5, pp 487–498 | Cite as

Next generation synthetic vectors for transformation of the plastid genome of higher plants

  • Sugey Ramona Sinagawa-García
  • Tarinee Tungsuchat-Huang
  • Octavio Paredes-López
  • Pal Maliga
Article

Abstract

Plastid transformation vectors are E. coli plasmids carrying a plastid marker gene for selection, adjacent cloning sites and flanking plastid DNA to target insertions in the plastid genome by homologous recombination. We report here on a family of next generation plastid vectors carrying synthetic DNA vector arms targeting insertions in the rbcL-accD intergenic region of the tobacco (Nicotiana tabacum) plastid genome. The pSS22 plasmid carries only synthetic vector arms from which the undesirable restriction sites have been removed by point mutations. The pSS24 vector carries a c-Myc tagged spectinomycin resistance (aadA) marker gene whereas in vector pSS30 aadA is flanked with loxP sequences for post-transformation marker excision. The synthetic vectors will enable direct manipulation of passenger genes in the transformation vector targeting insertions in the rbcL-accD intergenic region that contains many commonly used restriction sites.

Keywords

Homologous recombination Nicotiana tabacum Plastid transformation Tobacco Vector 

Notes

Acknowledgments

Sugey Ramona Sinagawa-García was supported by a Ph.D. scholarship from Consejo Nacional de Ciencia y Tecnología (CONACYT), México.

Supplementary material

11103_2009_9486_MOESM1_ESM.doc (82 kb)
Supplementary material 1 (DOC 82 kb)

References

  1. Birch-Machin I, Newell C, Hibberd JM, Gray JC (2004) Accumulation of rotavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability. Plant Biotechnol J 2:261–270. doi: 10.1111/j.1467-7652.2004.00072.x PubMedCrossRefGoogle Scholar
  2. Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438. doi: 10.1006/jmbi.2001.4960 PubMedCrossRefGoogle Scholar
  3. Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106. doi: 10.1016/j.copbio.2006.12.001 PubMedCrossRefGoogle Scholar
  4. Bock R, Maliga P (1995) In vivo testing of a tobacco plastid DNA segment for guide RNA function in psbL editing. Mol Gen Genet 247:439–443PubMedCrossRefGoogle Scholar
  5. Bock R, Kössel H, Maliga P (1994) Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype. EMBO J 13:4623–4628PubMedGoogle Scholar
  6. Carrer H, Maliga P (1995) Targeted insertion of foreign genes into the tobacco plastid genome without physical linkage to the selectable marker gene. Biotechnology 13:791–794. doi: 10.1038/nbt0895-791 CrossRefGoogle Scholar
  7. Carrer H, Staub JM, Maliga P (1990) Gentamycin resistance in Nicotiana conferred by AAC(3)-I, a narrow substrate specificity acetyl transferase. Plant Mol Biol 17:301–303. doi: 10.1007/BF00039510 CrossRefGoogle Scholar
  8. Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56PubMedCrossRefGoogle Scholar
  9. Chakrabarti SK, Lutz KA, Lertwirijawong B, Svab Z, Maliga P (2006) Expression of the cry9Aa2 B.t. gene in the tobacco chlroplasts confers extreme resistance to potato tuber moth. Transgenic Res 15:481–488. doi: 10.1007/s11248-006-0018-z PubMedCrossRefGoogle Scholar
  10. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995. doi: 10.1073/pnas.81.7.1991 PubMedCrossRefGoogle Scholar
  11. Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779–1783. doi: 10.1016/j.vaccine.2004.11.004 PubMedCrossRefGoogle Scholar
  12. Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489. doi: 10.1007/s11103-004-0192-4 PubMedCrossRefGoogle Scholar
  13. Horvath EM, Peter SO, Joët T, Rumeau D, Cournac L, Horvath GV, Kavanagh TA, Schäfer C, Peltier G, Medgyesy P (2000) Target inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123:1337–1350. doi: 10.1104/pp.123.4.1337 PubMedCrossRefGoogle Scholar
  14. Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa K (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217. doi: 10.1007/s11248-005-3997-2 PubMedCrossRefGoogle Scholar
  15. Kanevski I, Maliga P, Rhoades DF, Gutteridge S (1999) Plastome engineering of ribulose-1, 5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and a tobacco small subunit hybrid. Plant Physiol 119:133–141. doi: 10.1104/pp.119.1.133 PubMedCrossRefGoogle Scholar
  16. Kavanagh TA, Thanh ND, Lao NT, McGrath N, Peter SO, Horváth EM, Dix PJ, Medgyesy P (1999) Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics 152:1111–1122PubMedGoogle Scholar
  17. Khakhlova O, Bock R (2006) Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J 46:85–94. doi: 10.1111/j.1365-313X.2006.02673.x PubMedCrossRefGoogle Scholar
  18. Klaus SMJ, Huang FC, Golds TJ, Koop H-U (2004) Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat Biotechnol 22:225–229. doi: 10.1038/nbt933 PubMedCrossRefGoogle Scholar
  19. Koop HU, Herz S, Golds TJ, Nickelsen J (2007) The genetic transformation of plastids. In: Bock R (ed) Cell and molecular biology of plastids (topics in current genetics). Springer Verlag, Berlin, pp 457–510Google Scholar
  20. Kuroda H, Maliga P (2001) Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol 125:430–436. doi: 10.1104/pp.125.1.430 PubMedCrossRefGoogle Scholar
  21. Lelivelt C, McCabe M, Newell C, de Snoo B, Van Dunn K, Birch-Machin I, Gray JC, Mills K, Nugent JM (2005) Plastid transformation in lettuce (Lactuca sativa L). Plant Mol Biol 58:763–774. doi: 10.1007/s11103-005-7704-8 PubMedCrossRefGoogle Scholar
  22. Lutz KA, Maliga P (2007) Construction of marker-free transplastomic plants. Curr Opin Biotechnol 18:107–114. doi: 10.1016/j.copbio.2007.02.003 PubMedCrossRefGoogle Scholar
  23. Lutz KA, Maliga P (2008) Plastid genomes in a regenerating tobacco shoot derive from a small number of copies selected through a stochastic process. Plant J 56:975–983. doi: 10.1111/j.1365-313X.2008.03655.x PubMedCrossRefGoogle Scholar
  24. Lutz KA, Svab Z, Maliga P (2006) Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Nat Protocols 1:900–910. doi: 10.1038/nprot.2006.118 CrossRefGoogle Scholar
  25. Lutz KA, Azhagiri AK, Tungsuchat-Huang T, Maliga P (2007) A guide to choosing vectors for transformation of the plastid genome of higher plants. Plant Physiol 145:1201–1210. doi: 10.1104/pp.107.106963 PubMedCrossRefGoogle Scholar
  26. Maliga P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol 21:20–28. doi: 10.1016/S0167-7799(02)00007-0 PubMedCrossRefGoogle Scholar
  27. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313. doi: 10.1146/annurev.arplant.55.031903.141633 PubMedCrossRefGoogle Scholar
  28. Monde RA, Greene JC, Stern DB (2000a) The sequence and secondary structure of the 3′-UTR affect 3′-end maturation, RNA accumulation, and translation in tobacco chloroplasts. Plant Mol Biol 44:529–542. doi: 10.1023/A:1026540310934 PubMedCrossRefGoogle Scholar
  29. Monde RA, Schuster G, Stern DB (2000b) Processing and degradation of chloroplast mRNA. Biochimie 82:573–582. doi: 10.1016/S0300-9084(00)00606-4 PubMedCrossRefGoogle Scholar
  30. Murashige T, Skoog F (1962) A revised medium for the growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  31. Palmer JD (1985) Comparative organization of chloroplast genomes. Annu Rev Genet 19:325–354. doi: 10.1146/annurev.ge.19.120185.001545 PubMedCrossRefGoogle Scholar
  32. Rogalski M, Schottler MA, Thiele W, Schulze WX, Bock R (2008) Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell 20:2221–2237. doi: 10.1105/tpc.108.060392 PubMedCrossRefGoogle Scholar
  33. Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids: foreign protein expression in fruit. Nat Biotechnol 19:870–875. doi: 10.1038/nbt0901-870 PubMedCrossRefGoogle Scholar
  34. Shaver JM, Oldenburg DJ, Bendich AJ (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224:72–82. doi: 10.1007/s00425-005-0195-7 PubMedCrossRefGoogle Scholar
  35. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng B-Y, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049PubMedGoogle Scholar
  36. Silhavy D, Maliga P (1998) Mapping of the promoters for the nucleus-encoded plastid RNA polymerase (NEP) in the iojap maize mutant. Curr Genet 33:340–344. doi: 10.1007/s002940050345 PubMedCrossRefGoogle Scholar
  37. Staub JM, Maliga P (1992) Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4:39–45PubMedCrossRefGoogle Scholar
  38. Staub JM, Maliga P (1993) Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO J 12:601–606PubMedGoogle Scholar
  39. Staub JM, Maliga P (1994) Translation of psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J 6:547–553. doi: 10.1046/j.1365-313X.1994.6040547.x PubMedCrossRefGoogle Scholar
  40. Staub JM, Maliga P (1995a) Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant J 7:845–848. doi: 10.1046/j.1365-313X.1995.07050845.x PubMedCrossRefGoogle Scholar
  41. Staub JM, Maliga P (1995b) Marker rescue from the Nicotiana tabacum plastid genome using a plastid Escherichia coli shuttle vector. Mol Gen Genet 249:37–42. doi: 10.1007/BF00290233 PubMedCrossRefGoogle Scholar
  42. Stiekema WJ, Heidekamp F, Dirkse WG, van Beckum J, de Haan P, ten Bosch C, Louwerse JD (1988) Molecular cloning and analysis of four potato tuber mRNAs. Plant Mol Biol 11:255–269. doi: 10.1007/BF00027383 CrossRefGoogle Scholar
  43. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917. doi: 10.1073/pnas.90.3.913 PubMedCrossRefGoogle Scholar
  44. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530. doi: 10.1073/pnas.87.21.8526 PubMedCrossRefGoogle Scholar
  45. Thomas MR, Rose RJ (1983) Plastid number and plastid ultrastructural changes associated with tobacco meesophyll protoplast culture and plant regeneration. Planta 158:329–338. doi: 10.1007/BF00397335 CrossRefGoogle Scholar
  46. Tungsuchat T, Kuroda H, Narangajavana J, Maliga P (2006) Gene activation in plastids by the CRE site-specific recombinase. Plant Mol Biol 61:711–718. doi: 10.1007/s11103-006-0044-5 PubMedCrossRefGoogle Scholar
  47. Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143. doi: 10.1104/pp.107.106690 PubMedCrossRefGoogle Scholar
  48. Wakasugi T, Tsudzuki T, Sugiura M (2001) The genomics of land plant chloroplasts: gene content and alteration of genomic information by RNA editing. Photosynth Res 70:107–118. doi: 10.1023/A:1013892009589 PubMedCrossRefGoogle Scholar
  49. Wostrikoff K, Stern D (2007) Rubisco large-subunit translation is autoregulated in response to its assembly state in tobacco chloroplasts. Proc Natl Acad Sci USA 104:6466–6471. doi: 10.1073/pnas.0610586104 PubMedCrossRefGoogle Scholar
  50. Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genomics 275:367–373. doi: 10.1007/s00438-005-0092-6 PubMedCrossRefGoogle Scholar
  51. Zhou F, Karcher D, Bock R (2007) Identification of a plastid Intercistronic Expression Element (IEE) facilitating the expression of translatable monocistronic mRNAs from operons. Plant J 52:961–972. doi: 10.1111/j.1365-313X.2007.03261.x PubMedCrossRefGoogle Scholar
  52. Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers AM, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 6:897–913. doi: 10.1111/j.1467-7652.2008.00356.x CrossRefGoogle Scholar
  53. Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 22:3819–3824. doi: 10.1093/nar/22.19.3819 PubMedCrossRefGoogle Scholar
  54. Zuker M, Jaeger JA, Turner DH (1991) A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison. Nucleic Acids Res 19:2707–2714. doi: 10.1093/nar/19.10.2707 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sugey Ramona Sinagawa-García
    • 1
    • 2
  • Tarinee Tungsuchat-Huang
    • 1
  • Octavio Paredes-López
    • 2
  • Pal Maliga
    • 1
  1. 1.Waksman InstituteRutgers, The State University of New JerseyPiscatawayUSA
  2. 2.Depto. de Biotecnología y BioquímicaCentro de Investigación y de Estudios Avanzados del IPNIrapuatoMexico

Personalised recommendations