Advertisement

Plant Molecular Biology

, Volume 70, Issue 4, pp 443–456 | Cite as

Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance

  • Mohammad Asadul Islam
  • Hao Du
  • Jing Ning
  • Haiyan Ye
  • Lizhong Xiong
Article

Abstract

The outermost surfaces of plants are covered with an epicuticular wax layer that provides a primary waterproof barrier and protection against different environmental stresses. Glossy 1 (GL1) is one of the reported genes controlling wax synthesis. This study analyzed GL1-homologous genes in Oryza sativa and characterized the key members of this family involved in wax synthesis and stress resistance. Sequence analysis revealed 11 homologous genes of GL1 in rice, designated OsGL1-1 to  OsGL1-11. OsGL1-1, -2 and -3 are closely related to GL1. OsGL1-4, -5, -6, and -7 are closely related to Arabidopsis CER1 that is involved in cuticular wax biosynthesis. OsGL1-8, -9, -10 and -11 are closely related to SUR2 encoding a putative sterol desaturase also involved in epicuticular wax biosynthesis. These genes showed variable expression levels in different tissues and organs of rice, and most of them were induced by abiotic stresses. Compared to the wild type, the OsGL1-2-over-expression rice exhibited more wax crystallization and a thicker epicuticular layer; while the mutant of this gene showed less wax crystallization and a thinner cuticular layer. Chlorophyll leaching experiment suggested that the cuticular permeability was decreased and increased in the over-expression lines and the mutant, respectively. Quantification analysis of wax composition by GC–MS revealed a significant reduction of total cuticular wax in the mutant and increase of total cuticular wax in the over-expression plants. Compared to the over-expression and wild type plants, the osgl1-2 mutant was more sensitive to drought stress at reproductive stage, suggesting an important role of this gene in drought resistance.

Keywords

Drought resistance Expression profile Glossy1 Oryza sativa Wax accumulation 

Abbreviations

FA

Fatty acid

GC–MS

Gas chromatography–mass spectrometry

GL1

Glossy 1

PCR

Polymerase chain reaction

RT

Reverse transcriptase

SEM

Scanning electron microscopy

TEM

Transmission electron microscopy

VLCFA

Very long chain fatty acid

Notes

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China, the National Special Key Project of China on Functional Genomics of Major Plants and Animals, the National Program on the Development of Basic Research, and the Ministry of Education of China (No 707045).

Supplementary material

11103_2009_9483_MOESM1_ESM.doc (853 kb)
(DOC 853 kb)

References

  1. Aarts MGM, Keijzer CJ, Stiekema WJ et al (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127PubMedCrossRefGoogle Scholar
  2. Aharoni A, Dixit S, Jetter R et al (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480. doi: 10.1105/tpc.104.022897 PubMedCrossRefGoogle Scholar
  3. Barnes J, Percy K, Paul N et al (1996) The influence of UV-B radiation on the physiochemical nature of tobacco (Nicotiana tabacum L.) leaf surface. J Exp Bot 47:99–109. doi: 10.1093/jxb/47.1.99 CrossRefGoogle Scholar
  4. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from the contamination in biological science. Planta 202:1–8. doi: 10.1007/s004250050096 CrossRefGoogle Scholar
  5. Bianchi A, Bianchi G, Avato P et al (1985) Biosynthetic pathways of epicuticular wax of maize as assessed by mutation, light, plant age and inhibitor studies. Maydica 30:179–198Google Scholar
  6. Broun P, Poindexter P, Osborne E et al (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 10:4706–4711. doi: 10.1073/pnas.0305574101 CrossRefGoogle Scholar
  7. Chen XB, Goodwin SM, Boroff VL et al (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15:1170–1185. doi: 10.1105/tpc.010926 PubMedCrossRefGoogle Scholar
  8. Eigenbrode SD (1996) Plant surface waxes and insect behaviour. In: Kerstiens G (ed) Plant cuticles-an integrated functional approach. BIOS Scientific Publishers Limited, Oxford, pp 201–222Google Scholar
  9. Fiebig A, Mayfield JA, Miley NL et al (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008PubMedCrossRefGoogle Scholar
  10. Gattuso M, Bonomi M, Tateo F, et al (2007) Stress induced modulation of wax biosynthesis in maize and Arabidopsis. Proceedings of the 51st Italian Society of Agricultural Genetics Annual Congress. Poster Abstract C.02. Riva del Garda, ItalyGoogle Scholar
  11. Hannoufa A, Negruk V, Eisner G et al (1996) The CER3 gene of Arabidopsis thaliana is expressed in leaves, stems, roots, flowers and apical meristems. Plant J 10:459–467. doi: 10.1046/j.1365-313X.1996.10030459.x PubMedCrossRefGoogle Scholar
  12. Hansen JD, Pyee J, Xia Y et al (1997) The glossy1 locus of maize and an epidermis-specific cDNA from Kleinia odora define a class of receptor-like proteins required for the normal accumulation of cuticular waxes. Plant Physiol 113:1091–1100. doi: 10.1104/pp.113.4.1091 PubMedCrossRefGoogle Scholar
  13. Hiei Y, Ohta S, Komari T et al (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282. doi: 10.1046/j.1365-313X.1994.6020271.x PubMedCrossRefGoogle Scholar
  14. Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568–1580. doi: 10.1104/pp.003707 PubMedCrossRefGoogle Scholar
  15. James T, Post-Beittenmiller D, Jaworski JG (1999) KCS1 encodes and fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130. doi: 10.1046/j.1365-313X.1999.00352.x CrossRefGoogle Scholar
  16. Jefferson PG (1994) Genetic variation for epicuticular wax production in Altai wild rye populations that differ in glaucousness. Crop Sci 34:367–371CrossRefGoogle Scholar
  17. Jenks MA, Joly RJ, Peters PJ et al (1994) Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.) Moench. Plant Physiol 105:1239–1245PubMedGoogle Scholar
  18. Jenks MA, Tuttle HA, Eigenbrode SD et al (1995) Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol 108:369–377PubMedGoogle Scholar
  19. Jenks MA, Eigenbrode SD, Lemieux B (2002) Cuticular waxes of Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD. doi: 10.1199/tab.0016, http://www.aspb.org/publications/arabidopsis/
  20. Jung KH, Han MJ, Lee DY et al (2006) Wax deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032. doi: 10.1105/tpc.106.042044 PubMedCrossRefGoogle Scholar
  21. Kerstiens G (1996a) Signaling across the divide: a wider perspective of cuticular structure–function relationships. Trends Plant Sci 1:125–129. doi: 10.1016/S1360-1385(96)90007-2 CrossRefGoogle Scholar
  22. Kerstiens G (1996b) Cuticular water permeability and its physiological significance. J Exp Bot 47:1813–1832. doi: 10.1093/jxb/47.12.1813 CrossRefGoogle Scholar
  23. Kerstiens G (2006) Water transport in plant cuticles: an update. J Exp Bot 57:2493–2499. doi: 10.1093/jxb/erl017 PubMedCrossRefGoogle Scholar
  24. Kolattukudy PE (1980) Cutin, suberin, and waxes. In: Stumpf PK, Conn EE (eds) The biochemistry of plants. Academic, New York, pp 571–645Google Scholar
  25. Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80. doi: 10.1016/S0163-7827(02)00045-0 PubMedCrossRefGoogle Scholar
  26. Kurata T, Kawabata-Awai C, Sakuradani S et al (2003) The YORE–YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis. Plant J 36:55–66. doi: 10.1046/j.1365-313X.2003.01854.x PubMedCrossRefGoogle Scholar
  27. Lemieux B, Koornneef M, Feldmann KA (1994) Epicuticular waxes and eceriferum mutants. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Press, New York, pp 1031–1047Google Scholar
  28. Liang D, Wu C, Li C et al (2006) Establishment of a patterned GAL4-VP16 transactivation system for discovering gene function in rice. Plant J 46:1059–1072. doi: 10.1111/j.1365-313X.2006.02747.x PubMedCrossRefGoogle Scholar
  29. Lolle SJ, Berlyn GP, Engstrom EM et al (1997) Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle. Dev Biol 189:311–321. doi: 10.1006/dbio.1997.8671 PubMedCrossRefGoogle Scholar
  30. Lorenzoni C, Salamini F (1975) Glossy mutant of maize. V. morphology of the epicuticular waxes. Maydica 20:5–19Google Scholar
  31. Maddaloni M, Bossinger G, DiFonzo N et al (1990) Unstable alleles of the GLOSSY-1 locus of maize show a light-dependent variation in the pattern of somatic reversion. Maydica 35:409–420Google Scholar
  32. Millar AA, Clemens S, Zachgo S et al (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838PubMedCrossRefGoogle Scholar
  33. Moose S, Sisco P (1996) Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10:3018–3027. doi: 10.1101/gad.10.23.3018 PubMedCrossRefGoogle Scholar
  34. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185. doi: 10.1146/annurev.arplant.56.032604.144046 PubMedCrossRefGoogle Scholar
  35. Negruk V, Yang P, Subramanian M et al (1996) Molecular cloning and characterization of the CER2 gene of Arabidopsis thaliana. Plant J 9:137–145. doi: 10.1046/j.1365-313X.1996.09020137.x PubMedCrossRefGoogle Scholar
  36. Nicholas KB, Nicholas HB Jr, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation. EMBNET News 4:1–4Google Scholar
  37. Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Ann Rev Plant Physiol Mol Biol 48:109–136. doi: 10.1146/annurev.arplant.48.1.109 CrossRefGoogle Scholar
  38. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  39. Post-Beittenmiller D (1996) Biochemistry and molecular biology of wax production in plants. Annu Rev Plant Physiol Plant Mol Biol 47:405–430. doi: 10.1146/annurev.arplant.47.1.405 PubMedCrossRefGoogle Scholar
  40. Pruitt RE, Vielle-Calzada JP, Ploense SE et al (2000) FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci USA 97:1311–1316. doi: 10.1073/pnas.97.3.1311 PubMedCrossRefGoogle Scholar
  41. Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032. doi: 10.1093/jexbot/52.363.2023 PubMedCrossRefGoogle Scholar
  42. Saijo Y, Hata S, Kyozuka J et al (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327. doi: 10.1046/j.1365-313x.2000.00787.x PubMedCrossRefGoogle Scholar
  43. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641. doi: 10.1146/annurev.arplant.49.1.611 PubMedCrossRefGoogle Scholar
  44. Shanklin J, Whittle E, Fox BG (1994) Eight histidine-residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794. doi: 10.1021/bi00209a009 PubMedCrossRefGoogle Scholar
  45. St-Pierre B, Laflamme P, Alarco AM et al (1998) The terminal O-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A-dependent acyl transfer. Plant J 14:703–713. doi: 10.1046/j.1365-313x.1998.00174.x PubMedCrossRefGoogle Scholar
  46. Sturaro M, Hartings H, Schmelzer E et al (2005) Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production. Plant Physiol 138:478–489. doi: 10.1104/pp.104.058164 PubMedCrossRefGoogle Scholar
  47. Tacke E, Korfhage C, Michel D et al (1995) Transposon tagging of the maize Glossy2 locus with the transposable element En/Spm. Plant J 8:907–917PubMedGoogle Scholar
  48. Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality aided analysis tools. Nucleic Acids Res 25:4876–4882. doi: 10.1093/nar/25.24.4876 PubMedCrossRefGoogle Scholar
  49. Todd J, Post BD, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130. doi: 10.1046/j.1365-313X.1999.00352.x PubMedCrossRefGoogle Scholar
  50. Vogg G, Fischer S, Leide J et al (2004) Tomato fruit cuticular waxes and the effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid b-ketoacyl- CoA synthase. J Exp Bot 55:1401–1410. doi: 10.1093/jxb/erh149 PubMedCrossRefGoogle Scholar
  51. von Wettstein-Knowles P (1979) Genetics and biosynthesis of plant epicuticular waxes. In: Appelqvist L-A, Liljenberg C (eds) Advances in the biochemistry and physiology of plant lipids. Elsevier North-Holland Biomedical Press, Amsterdam, pp 1–26Google Scholar
  52. Walton TJ (1990) Waxes, cutin and suberin. In: Harwood JL, Bowyer JR (eds) Methods in plant biochemistry lipids, membranes and aspects of photobiology. Academic, San Diego, pp 105–158Google Scholar
  53. Xia Y, Nikolau BJ, Schnable PS (1996) Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation. Plant Cell 8:1291–1304PubMedCrossRefGoogle Scholar
  54. Xia Y, Nikolau BJ, Schnable PS (1997) Developmental and hormonal regulation of the Arabidopsis CER2 gene that codes for a nuclear-localized protein required for the normal accumulation of cuticular waxes. Plant Physiol 115:925–937. doi: 10.1104/pp.115.3.925 PubMedCrossRefGoogle Scholar
  55. Xiao FM, Goodwin SM, Xiao YM et al (2004) Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J 23:2903–2913. doi: 10.1038/sj.emboj.7600290 PubMedCrossRefGoogle Scholar
  56. Xu X, Dietrich CR, Delledonne M et al (1997) Sequence analysis of the cloned glossy8 gene of maize suggests that it may code for a [beta]-ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol 115:501–510. doi: 10.1104/pp.115.2.501 PubMedCrossRefGoogle Scholar
  57. Yu D, Ranathunge K, Huang H et al (2008) Wax crystal-sparse leaf1 encodes a β-ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf. Planta 228:675–685. doi: 10.1007/s00425-008-0770-9 PubMedCrossRefGoogle Scholar
  58. Zhang JY, Broeckling CD, Blancaflor EB et al (2005) Over-expression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707. doi: 10.1111/j.1365-313X.2005.02405.x PubMedCrossRefGoogle Scholar
  59. Zhang JY, Broeckling CD, Sumner LW et al (2007) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64:265–278. doi: 10.1007/s11103-007-9150-2 PubMedCrossRefGoogle Scholar
  60. Zhou J, Wang X, Jiao Y et al (2007) Global genome expression analysis of rice in response to drought and high salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608. doi: 10.1007/s11103-006-9111-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mohammad Asadul Islam
    • 1
    • 2
  • Hao Du
    • 1
  • Jing Ning
    • 1
  • Haiyan Ye
    • 1
  • Lizhong Xiong
    • 1
  1. 1.National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
  2. 2.Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh

Personalised recommendations