Plant Molecular Biology

, Volume 70, Issue 4, pp 403–420 | Cite as

Shared and novel molecular responses of mandarin to drought

  • Jacinta Gimeno
  • José Gadea
  • Javier Forment
  • Jorge Pérez-Valle
  • Julia Santiago
  • María A. Martínez-Godoy
  • Lynne Yenush
  • José M. Bellés
  • Javier Brumós
  • José M. Colmenero-Flores
  • Manuel Talón
  • Ramón Serrano


Drought is the most important stress experienced by citrus crops. A citrus cDNA microarray of about 6.000 genes has been utilized to identify transcriptomic responses of mandarin to water stress. As observed in other plant species challenged with drought stress, key genes for lysine catabolism, proline and raffinose synthesis, hydrogen peroxide reduction, vacuolar malate transport, RCI2 proteolipids and defence proteins such as osmotin, dehydrins and heat-shock proteins are induced in mandarin. Also, some aquaporin genes are repressed. The osmolyte raffinose could be detected in stressed roots while the dehydrin COR15 protein only accumulated in stressed leaves but not in roots. Novel drought responses in mandarin include the induction of genes encoding a new miraculin isoform, chloroplast β-carotene hydroxylase, oleoyl desaturase, ribosomal protein RPS13A and protein kinase CTR1. These results suggest that drought tolerance in citrus may benefit from inhibition of proteolysis, activation of zeaxanthin and linolenoyl synthesis, reinforcement of ribosomal structure and down-regulation of the ethylene response.


Citrus Water stress Transcriptomics Raffinose Dehydrin Ethylene response 



We thank María J. Rodrigo and Lorenzo Zacarías (IATA, Valencia) for the Escherichia coli M15 strain expressing CrCOR15. This work was funded by “Ministerio de Educación y Ciencia” (Madrid, BFU2005-06388-C04-01 and AGL2007-65437-C04-01 grants) and “Consellería de Agricultura, Pesca y Alimentación de la Generalitat Valenciana” (Valencia, “Proyecto Genoma Cítricos”).

Supplementary material

11103_2009_9481_MOESM1_ESM.doc (340 kb)
Supplementary material 1 (DOC 339 kb)
11103_2009_9481_MOESM2_ESM.xls (208 kb)
Supplementary material 2 (XLS 208 kb)
11103_2009_9481_MOESM3_ESM.xls (179 kb)
Supplementary material 3 (XLS 179 kb)
11103_2009_9481_MOESM4_ESM.xls (109 kb)
Supplementary material 4 (XLS 109 kb)
11103_2009_9481_MOESM5_ESM.xls (44 kb)
Supplementary material 5 (XLS 44 kb)
11103_2009_9481_MOESM6_ESM.doc (32 kb)
Supplementary material 6 (DOC 32 kb)


  1. Agustí J, Zapater M, Iglesias DJ, Cercós M, Tadeo FR, Talón M (2007) Differential expression of putative 9-cis-epoxycarotenoid dioxygenases and abscisic acid accumulation in water stressed vegetative and reproductive tissues of citrus. Plant Sci 172:85–94. doi: 10.1016/j.plantsci.2006.07.013 Google Scholar
  2. Alexandersson E, Fraysse L, Sjöval-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484. doi: 10.1007/s11103-005-0352-1 PubMedGoogle Scholar
  3. Allakhverdiev SI, Kinooshita M, Innaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt- induced damage in Synechococcus. Plant Physiol 125:1842–1853. doi: 10.1104/pp.125.4.1842 PubMedGoogle Scholar
  4. Allen RD (1995) Dissection of oxiidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054PubMedGoogle Scholar
  5. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701 PubMedGoogle Scholar
  6. Avsian-Kretchmer O, Eshdat Y, Gueta-Dahan Y, Ben-Hayyim G (1999) Regulation of stress-induced phospholipid hydroperoxide glutathine peroxidase expression in citrus. Planta 209:469–477. doi: 10.1007/s004250050750 PubMedGoogle Scholar
  7. Bañuls J, Serna MD, Legaz F, Talon M, Primo-Millo E (1997) Growth and gas exchange parameters of Citrus plants stressed with different salts. J Plant Physiol 150:194–199Google Scholar
  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  9. Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424. doi: 10.1007/s00299-007-0474-9 PubMedGoogle Scholar
  10. Bies-Etheve N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124. doi: 10.1007/s11103-008-9304-x PubMedGoogle Scholar
  11. Boyer JS (1982) Plant productivity and environment. Science 218:443–448. doi: 10.1126/science.218.4571.443 PubMedGoogle Scholar
  12. Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364. doi: 10.1016/0092-8674(90)90587-5 PubMedGoogle Scholar
  13. Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedGoogle Scholar
  14. Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203Google Scholar
  15. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451. doi: 10.1016/j.cell.2006.04.014 PubMedGoogle Scholar
  16. Cercós M, Soler G, Iglesias DJ, Gadea J, Forment J, Talón M (2006) Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol Biol 62:513–527. doi: 10.1007/s11103-006-9037-7 PubMedGoogle Scholar
  17. Cho EK, Hong CB (2005) Over-expression of tobacco NtHSP70–1 contributes to drought-stress tolerance in plants. Plant Cell Rep 25:349–358. doi: 10.1007/s00299-005-0093-2 PubMedGoogle Scholar
  18. Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803Google Scholar
  19. Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974. doi: 10.1073/pnas.93.18.9970 PubMedGoogle Scholar
  20. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223. doi: 10.1046/j.1365-313X.1993.04020215.x Google Scholar
  21. Du J, Huang Y-P, Xi J, Cao M-J, Ni W-S, Zhu J-K, Oliver DJ, Xiang C-B (2008) Functional gene-mining for salt tolerance genes with the power of Arabidopsis. Plant J 56:653–664PubMedGoogle Scholar
  22. Emmerlich V, Linka T, Hurth MA, Traub M, Martinoia E, Neuhaus HE (2003) The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proc Natl Acad Sci USA 100:11122–11126. doi: 10.1073/pnas.1832002100 PubMedGoogle Scholar
  23. Etheridge N, Hall BP, Schaller GE (2006) Progress report: ethylene signaling and responses. Planta 223:387–391. doi: 10.1007/s00425-005-0163-2 PubMedGoogle Scholar
  24. Fiore A, Dall’Osto L, Fraser PD, Bassi R, Giuliano G (2006) Elucidation of the β-carotene hydroxylation pathway in Arabidopsis thaliana. FEBS Lett 580:4718–4722. doi: 10.1016/j.febslet.2006.07.055 PubMedGoogle Scholar
  25. Forment J, Gadea J, Huerta L, Abizanda L, Agusti J, Alamar S, Alos E, Andres F, Beltran JP, Berbel A, Blazquez MA, Brumos J, Cañas LA, Cercós M, Colmenero-Flores JM, Conesa A, Estables B, Gandia M, Garcia-Martinez JL, Gimeno J, Gisbert A, Gomez G, Gonzalez-Candelas L, Granell A, Guerri J, Lafuente MT, Madueño F, Marcos JF, Martinez F, Martinez-Godoy MA, Miralles S, Moreno P, Navarro L, Pallas V, Perez-Amador M, Perez-Valle J, Pons C, Rodrigo I, Rodriguez PL, Royo C, Serrano R, Soler G, Tadeo F, Talon M, Terol J, Trenor M, Vaello L, Vicente O, Vidal C, Zacarias L, Conejero V (2005) Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Mol Biol 57:375–391. doi: 10.1007/s11103-004-7926-1 PubMedGoogle Scholar
  26. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme- Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488. doi: 10.1105/tpc.105.035659 PubMedGoogle Scholar
  27. Gagne JM, Downes BP, Shiu S-H, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA 99:11519–11524. doi: 10.1073/pnas.162339999 PubMedGoogle Scholar
  28. Galili G, Tang G, Zhu X, Gakiere B (2001) Lysine catabolism: a stress and development super-regulated metabolic pathway. Curr Opin Plant Biol 4:261–266. doi: 10.1016/S1369-5266(00)00170-9 PubMedGoogle Scholar
  29. Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryores are common during conditions of water deficit. J Biol Chem 275:5668–5674. doi: 10.1074/jbc.275.8.5668 PubMedGoogle Scholar
  30. Gómez-Cadenas A, Tadeo FR, Talon M, Primo-Millo E (1996) Leaf abscission induced by ethylene in water stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiol 112:401–408PubMedGoogle Scholar
  31. Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471. doi: 10.1016/j.pbi.2004.04.007 PubMedGoogle Scholar
  32. Hara M, Terashima S, Kuboi T (2001) Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J Plant Physiol 158:1333–1339. doi: 10.1078/0176-1617-00600 Google Scholar
  33. Heldt H-W (2005) Plant biochemistry. Elsevier, Amsterdam, pp 110–112Google Scholar
  34. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438. doi: 10.1016/S1360-1385(01)02052-0 PubMedGoogle Scholar
  35. Hon WC, Griffith M, Mlynarz A, Kwok YC, Yang DS (1995) Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol 109:879–889. doi: 10.1104/pp.109.3.879 PubMedGoogle Scholar
  36. Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136. doi: 10.1104/pp.122.4.1129 PubMedGoogle Scholar
  37. Hong-Bo S, Li-Ye C, Ming-An S (2008) Calcium as a versatile plant signal transducer under soil water stress. Bioessays 30:634–641. doi: 10.1002/bies.20770 PubMedGoogle Scholar
  38. Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007. doi: 10.1093/jxb/ern155 PubMedGoogle Scholar
  39. Huerta L, Forment J, Gadea J, Fagoaga C, Peña L, Pérez-Amador MA, García-Martínez JL (2008) Gene expression analysis in citrus reveals the role of gibberellins on photosynthesis and stress. Plant Cell Environ 31:1620–1633. doi: 10.1111/j.1365-3040.2008.01870.x PubMedGoogle Scholar
  40. Hundertmark M, Hincha DK (2008) LEA (Late Embriogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118–140. doi: 10.1186/1471-2164-9-118 PubMedGoogle Scholar
  41. Hurth MA, Suh SJ, Krtzschmar T, Geis T, Bregante M, Gambale F, Martinoia E, Neuhaus HE (2005) Impaired pH homesotasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiol 137:901–910. doi: 10.1104/pp.104.058453 PubMedGoogle Scholar
  42. Iglesias DJ, Cercós M, Colmenero-Flores JM, Naranjo MA, Ríos G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Tadeo FR, Talon M (2007) Physiology of citrus fruiting. Braz J Plant Physiol 19:333–362. doi: 10.1590/S1677-04202007000400006 Google Scholar
  43. Imai R, Chang L, Ohta A, Bray EA, Takagi M (1996) A lea-class gene from tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170:243–248. doi: 10.1016/0378-1119(95)00868-3 PubMedGoogle Scholar
  44. Ito T, Kim GT, Shinozaki K (2000) Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J 22:257–268. doi: 10.1046/j.1365-313x.2000.00728.x PubMedGoogle Scholar
  45. Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Corbajosa J, Tiedemann J, Kroj T, Parcy F, bZIP Research Group (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111PubMedGoogle Scholar
  46. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes enncoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369. doi: 10.1104/pp.126.4.1358 PubMedGoogle Scholar
  47. Johnstone A, Thorpe R (1987) Immunochemistry in practice. BlackwellGoogle Scholar
  48. Jones EW, Webb GC, Hiller MA (1997) Biogenesis and function of the yeast vacuole. In: Pringle JR, Broach JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces. Cell cycle and cell biology, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 363–470Google Scholar
  49. Jung J, Won SY, Suh SC, Kim HR, Wing R, Jeong Y, Hwang I, Kim M (2007) The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta 225:575–588. doi: 10.1007/s00425-006-0373-2 PubMedGoogle Scholar
  50. Kavi Kishor PB, Hong Z, Miao G-H, Hu C-AA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394Google Scholar
  51. Kerr RA (1998) Sea-floor dust shows drought felled the Akkadian empire. Science 279:325–326. doi: 10.1126/science.279.5349.325 Google Scholar
  52. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441. doi: 10.1016/0092-8674(93)90119-B PubMedGoogle Scholar
  53. Koskull-Döring P, Scharf K-D, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457. doi: 10.1016/j.tplants.2007.08.014 Google Scholar
  54. Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390. doi: 10.1104/pp.108.118208 PubMedGoogle Scholar
  55. Kurihara K, Beidker ML (1968) Taste-modifying protein from miracle fruit. Science 20:1241–1243. doi: 10.1126/science.161.3847.1241 Google Scholar
  56. Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0 PubMedGoogle Scholar
  57. Laskowski M, Kato I (1980) Protein inhibitors of proteinases. Annu Rev Biochem 49:593–626. doi: 10.1146/ PubMedGoogle Scholar
  58. Lechner E, Achard P, Vansiri A, Potuschak T, Gnschik P (2006) F-box proteins everywhere. Curr Opin Plant Biol 99:631–638. doi: 10.1016/j.pbi.2006.09.003 Google Scholar
  59. Leigh RA, Ahmad NN, Wyn Jones RG (1981) Assessment of glycinebetaine and proline compartmentation by analysis of isolated beet vacuoles. Planta 153:34–41. doi: 10.1007/BF00385315 Google Scholar
  60. Leroux MR, Hartl FU (2000) Protein folding: versatility of the cytosolic chaperonin TRiC/CCT. Curr Biol 10:R260–R264. doi: 10.1016/S0960-9822(00)00432-2 PubMedGoogle Scholar
  61. Lliso I, Tadeo FR, Phinney BS, Wilkerson CG, Talon M (2007) Protein changes in the albedo of citrus fruits on post-harvesting storage. J Agric Food Chem 55:9047–9053. doi: 10.1021/jf071198a PubMedGoogle Scholar
  62. MacCrackken MC (2008) Prospects for future climatic change and the reasons for early action. J Air Waste Manag Assoc 58:735–7886CrossRefGoogle Scholar
  63. Malmberg R, Messing J, Sussex I (1985) Molecular biology of plants. A Laboratory Course Manual. Cold Spring Harbor Laboratory Press, New York, p 41Google Scholar
  64. Medina J, Ballesteros ML, Salinas J (2007) Phylogenetic and functional analysis of Arabidopsis RCI2 genes. J Exp Bot 58:4333–4346. doi: 10.1093/jxb/erm285 PubMedGoogle Scholar
  65. Mehouachi J, Gómez-Cadenas A, Primo-Millo E, Talon M (2005) Antagonistic changes between abscisic acid and gibberellins in citrus fruits subjected to a series of different water conditions. J Plant Growth Regul 24:179–187. doi: 10.1007/s00344-004-0001-y Google Scholar
  66. Miquel MF, Browse JA (1994) High-oleate oilseeds fail to develop at low temperature. Plant Physiol 106:421–427PubMedGoogle Scholar
  67. Mitsuya S, Taniguchi M, Miyake H, Takabe T (2005) Disruption of RCI2A leads to over- accumulation of Na+ and increased salt sensitivity in Arabidopsis thaliana plants. Planta 222:1001–1009. doi: 10.1007/s00425-005-0043-9 PubMedGoogle Scholar
  68. Mitsuya S, Taniguchi M, Miyake H, Takabe T (2006) Overexpression of RCI2A decreases Na+ uptake and mitigates salinity-induced damages in Arabidopsis thaliana plants. Physiol Plant 128:95–102. doi: 10.1111/j.1399-3054.2006.00714.x Google Scholar
  69. Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 93:765–7699. doi: 10.1073/pnas.93.2.765 PubMedGoogle Scholar
  70. Molinari HBC, Marur CJ, Filho JCB, Kobayashi AK, Pileggi M, Junior RPL, Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus cinensis Osb. X Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381. doi: 10.1016/j.plantsci.2004.07.007 Google Scholar
  71. Mulet JM, Leube MP, Kron SJ, Rios G, Fink GR, Serrano R (1999) A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protien kinases modulate the Trk1–Trk2 potassium transporter. Mol Cell Biol 19:3328–3337PubMedGoogle Scholar
  72. Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J 18:185–193. doi: 10.1046/j.1365-313X.1999.00438.x PubMedGoogle Scholar
  73. Narasimhan ML, Coca MA, Jin J, Yamauchi T, Ito Y, Kadowaki T, Kim KK, Pardo JM, Damsz B, Hasegawa PM, Yun DJ, Bressan RA (2005) Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 17:171–180. doi: 10.1016/j.molcel.2004.11.050 PubMedGoogle Scholar
  74. Navarre C, Goffeau A (2000) Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. EMBO J 19:2515–2524. doi: 10.1093/emboj/19.11.2515 PubMedGoogle Scholar
  75. Netting AG (2002) pH, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions. II. Modifications in modes of metabolism induced by variation in the tension on the water column and by stress. J Exp Bot 53:151–173. doi: 10.1093/jexbot/53.367.151 PubMedGoogle Scholar
  76. Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263. doi: 10.1104/pp.108.122465 PubMedGoogle Scholar
  77. Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279. doi: 10.1023/A:1006469128280 PubMedGoogle Scholar
  78. Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158PubMedGoogle Scholar
  79. Ozturk ZN, Talame V, Dehyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573. doi: 10.1023/A:1014875215580 Google Scholar
  80. Parry MAJ, Flexas J, Medrano H (2005) Prospects for crop production under drought: research priorities and future directions. Ann Appl Biol 147:211–226. doi: 10.1111/j.1744-7348.2005.00032.x Google Scholar
  81. Pérez-Pérez JG, Syvertsen JP, Botía P, García-Sanchez F (2007) Leaf water relations and net gas exchange responses of salinized carrizo citrange seedlings during drought stress and recovery. Ann Bot (Lond) 11:335–345. doi: 10.1093/aob/mcm113 Google Scholar
  82. Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plantss. Plant J 34:187–203. doi: 10.1046/j.1365-313X.2003.01715.x PubMedGoogle Scholar
  83. Porat R, Pavoncello D, Lurie S, McCollum TG (2002) Identification of a grapefruit cDNA belonging to a unique classs of citrus dehydrins and characterization of its expression pattern under temperature stress conditions. Physiol Plant 115:598–603. doi: 10.1034/j.1399-3054.2002.1150414.x PubMedGoogle Scholar
  84. Prieto-Dapena P, Castaño R, Almoguera C, Jordano J (2008) The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs. Plant J 54:1004–1014. doi: 10.1111/j.1365-313X.2008.03465.x PubMedGoogle Scholar
  85. Puhakainen T, Hess MW, Makkela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhance tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–754. doi: 10.1023/B:PLAN.0000040903.66496.a4 PubMedGoogle Scholar
  86. Ríos G, Naranjo MA, Iglesias DJ, Ruiz-Rivero O, Geraud M, López-García A, Talon M (2008) Characterization of hemizygous deletions in Citrus using array-comparative genomic hybridization and microsynteny comparison with the poplar genome. BMC Genomics 9:381. doi: 10.1186/1471-2164-9-381 PubMedGoogle Scholar
  87. Rodriguez Milla MA, Maurer A, Rodriguez Huete A, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J 36:602–615. doi: 10.1046/j.1365-313X.2003.01901.x PubMedGoogle Scholar
  88. Romero C, Bellés JM, Vayá JL, Serrano R, Culiañez-Maciá FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleitropic phenotypes include drought tolerance. Planta 201:293–297. doi: 10.1007/s004250050069 PubMedGoogle Scholar
  89. Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S- transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234. doi: 10.1093/pcp/pcd051 PubMedGoogle Scholar
  90. Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121PubMedGoogle Scholar
  91. Saha D, Prasad AM, Srinivasan R (2007) Pentatricopeptide repeat proteins and their emerging roles in plants. Plant Physiol Biochem 455:521–534. doi: 10.1016/j.plaphy.2007.03.026 Google Scholar
  92. Sanchez-Ballesta MT, Rodrigo MJ, Lafuente MT, Granell A, Zacarías L (2004) Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 52:1950–1957. doi: 10.1021/jf035216+ PubMedGoogle Scholar
  93. Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, coldand high- salinity stresses using a full-length cDNA microarray. Plant J 31:279–292. doi: 10.1046/j.1365-313X.2002.01359.x PubMedGoogle Scholar
  94. Shatters RG, Bausher MG, Hunter WB, Chaparro JX, Dang PM, Niedz RP, Mayer RT, McCollum TG, Sinisterra X (2004) Putative protease inhibitor gene discovery and transcript profiling during fruit development and leaf damage in grapefruit (Citrus paradisi Macf.). Gene 326:77–86. doi: 10.1016/j.gene.2003.10.010 PubMedGoogle Scholar
  95. Shinozaki K, Yamagchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223PubMedGoogle Scholar
  96. Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch E, Regnier FE, Bressan RA (1987) Characterization of osmotin. A thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 85:529–536. doi: 10.1104/pp.85.2.529 PubMedGoogle Scholar
  97. Sjödin A, Bylesjö M, Skogström O, Eriksson D, Nilsson P, Rydén P, Jansson S, Karlsson J (2006) UPSC-BASE—Populus transcriptomics online. Plant J 48:806–817. doi: 10.1111/j.1365-313X.2006.02920.x PubMedGoogle Scholar
  98. Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochem 28:1057–1060. doi: 10.1016/0031-9422(89)80182-7 Google Scholar
  99. Stepansky A, Galili G (2003) Synthesis of the Arabidopsis bifunctional lysine- ketoglutarate reductase/sacsharopine dehydrogenase enzyme of lysine catabolism is concertedly regulated by metabolic and stress-associated signals. Plant Physiol 133:1407–1415. doi: 10.1104/pp.103.026294 PubMedGoogle Scholar
  100. Stepansky A, Less H, Angelovici R, Aharon R, Zhu X, Galili G (2006) Lysine catabolism, an effective versatile regulator of lysine level in plants. Amino Acids 30:121–125. doi: 10.1007/s00726-005-0246-1 PubMedGoogle Scholar
  101. Storey R, Walker RR (1999) Citrus and salinity. Sci Hortic (Amsterdam) 78:39–81. doi: 10.1016/S0304-4238(98)00190-3 Google Scholar
  102. Sun Z, Gantt E, Cunningham FX (1996) Cloning and functional analysis of the beta-carotene hydroxylase of Arabidopsis thaliana. J Biol Chem 271:24349–24355. doi: 10.1074/jbc.271.40.24349 PubMedGoogle Scholar
  103. Sun W, Bernard C, Van de Cotte B, Van Montagu M, Verbruggen N (2001) At- HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415. doi: 10.1046/j.1365-313X.2001.01107.x PubMedGoogle Scholar
  104. Tadeo FR, Cercós M, Colmenero-Flores JM, Iglesias DJ, Naranjo MA, Ríos G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Ollitrault P, Talon M (2008) Molecular physiology of development and quality of citrus. Adv Bot Res 49:147–223. doi: 10.1016/S0065-2296(08)00004-9 Google Scholar
  105. Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426. doi: 10.1046/j.0960-7412.2001.01227.x PubMedGoogle Scholar
  106. Takeda S, Matsuokka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457. doi: 10.1038/nrg2342 PubMedGoogle Scholar
  107. Talon M, Gmitter FG Jr (2008) Citrus genomics. Int J Plant Genomics 2008:528361PubMedGoogle Scholar
  108. Terol J, Conesa A, Colmenero JM, Cercos M, Tadeo FR, Agustí J, Alós E, Andres F, Soler G, Brumos J, Iglesias DJ, Götz S, Legaz F, Argout X, Courtois B, Ollitrault P, Dossat C, Wincker P, Morillon R, Talon M (2007) Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genomics 8:31. doi: 10.1186/1471-2164-8-31 PubMedGoogle Scholar
  109. Terol J, Naranjo MA, Ollitrault P, Talon M (2008) Development of genomic resources for Citrus clementina: characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genomics 9:423. doi: 10.1186/1471-2164-9-423 PubMedGoogle Scholar
  110. Theerasilp S, Hitotsuya H, Nakajo S, Nakaya K, Nakamura Y, Kurihara Y (1989) Complete amino-acid sequence and structure characterization of the taste- modifying protein miraculin. J Biol Chem 264:6655–6659PubMedGoogle Scholar
  111. Tian L, Magallanes LM, Musetti V, DellaPenna D (2003) Functional analysis of beta- and varepsilon- ring carotenoid hydroxylases in Arabidopsis. Plant Cell 15:1320–1329. doi: 10.1105/tpc.011403 PubMedGoogle Scholar
  112. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrilamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354. doi: 10.1073/pnas.76.9.4350 PubMedGoogle Scholar
  113. Tsukuda S, Gomi K, Yamamoto H, Akimitsu K (2006) Characterization of cDNAs encoding two distinct miraculin-like proteins and stress modulation of the corresponding mRNAs in Citrus jambhiri Lush. Plant Mol Biol 60:125–136. doi: 10.1007/s11103-005-2941-4 PubMedGoogle Scholar
  114. Tuba Z, Lichtenhaler HK (2007) Long-term acclimation of plants to elevated CO2 and its interaction with stresses. Ann N Y Acad Sci 1113:135–146. doi: 10.1196/annals.1391.021 PubMedGoogle Scholar
  115. Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122PubMedGoogle Scholar
  116. Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. doi: 10.1146/annurev.phyto.44.070505.143425 PubMedGoogle Scholar
  117. Vandenbroucke K, Robbens S, Vandepoele K, Inze D, Van de Peer Y, Van Breusegem F (2008) Hydrogen peroxide-induced gene expression across kingdoms: a comparative analysis. Mol Biol Evol 25:507–516. doi: 10.1093/molbev/msm276 PubMedGoogle Scholar
  118. Walsh P, Bursac D, Law YC, Cyr D, Lithgow T (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571. doi: 10.1038/sj.embor.7400172 PubMedGoogle Scholar
  119. Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40:725–732PubMedGoogle Scholar
  120. Weigel D, Glazebrook J (2002) Arabidopsis. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 143–170Google Scholar
  121. Weiss H, Bradley RS (2001) What drives societal collapse? Science 291:609–610. doi: 10.1126/science.1058775 PubMedGoogle Scholar
  122. Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under field conditions. Theor Appl Genet 115:35–46. doi: 10.1007/s00122-007-0538-9 PubMedGoogle Scholar
  123. Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257PubMedGoogle Scholar
  124. Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold and drought tolerance in crops. Plant Physiol 135:615–621. doi: 10.1104/pp.104.040295 PubMedGoogle Scholar
  125. Zhu J-K (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406. doi: 10.1016/S1369-5266(00)00192-8 PubMedGoogle Scholar
  126. Zhu X, Granier F, Bouchez D, Galili G (2001) A T-DNA insertion knockout of the bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase gene elevates lysine levels in Arabidopsis seeds. Plant Physiol 126:1539–1545. doi: 10.1104/pp.126.4.1539 PubMedGoogle Scholar
  127. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632. doi: 10.1104/pp.104.046367 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jacinta Gimeno
    • 1
  • José Gadea
    • 1
  • Javier Forment
    • 1
  • Jorge Pérez-Valle
    • 1
  • Julia Santiago
    • 1
  • María A. Martínez-Godoy
    • 1
  • Lynne Yenush
    • 1
  • José M. Bellés
    • 1
  • Javier Brumós
    • 2
  • José M. Colmenero-Flores
    • 2
  • Manuel Talón
    • 2
  • Ramón Serrano
    • 1
  1. 1.Instituto De Biología Molecular y Celular de PlantasUniversidad Politécnica de Valencia-CSICValenciaSpain
  2. 2.Centro de Genómica, Instituto Valenciano de Investigaciones AgrariasMoncadaValenciaSpain

Personalised recommendations