Advertisement

Plant Molecular Biology

, Volume 70, Issue 4, pp 371–383 | Cite as

Overexpression of Arabidopsis damaged DNA binding protein 1A (DDB1A) enhances UV tolerance

  • Wesam M. Al Khateeb
  • Dana F. Schroeder
Article

Abstract

Damaged DNA Binding protein 1 (DDB1) is a conserved protein and a component of multiple cellular complexes. Arabidopsis has two homologues of DDB1: DDB1A and DDB1B. In this study we examine the role of DDB1A in Arabidopsis UV tolerance and DNA repair using a DDB1A null mutant (ddb1a) and overexpression lines. DDB1A overexpression lines showed higher levels of UV-resistance than wild-type in a range of assays as well as faster DNA repair. However a significant difference between wild-type plants and ddb1a mutants was only observed immediately following UV treatment in root length and photoproduct repair assays. DDB1A and DDB1B mRNA levels increased 3 h after UV exposure and DDB1A is required for UV regulation of DDB1B and DDB2 mRNA levels. In conclusion, while DDB1A is sufficient to increase Arabidopsis UV tolerance, it is only necessary for immediate response to UV damage.

Keywords

DDB1A DNA repair Arabidopsis UV DDB1B DDB2 

Abbreviations

6-4PPs

Pyrimidine (6-4) pyrimidinone dimers

CPDs

Cyclobutane pyrimidine dimers

CS

Cockayne syndrome

DDB

Damaged DNA binding protein

GGR

Global genomic repair

HA

Haemagglutinin

NER

Nucleotide excision repair

TCR

Transcription-coupled repair

UV

Ultraviolet

XP

Xeroderma pigmentosa

Notes

Acknowledgements

The authors thank Yu Zhang, Mehdi Sefidgar, David Collister, Lana Rosenfeld, Avril Hatherell and Mala Vijayakumar for technical assistance and David Bird and Fawzi Razem for critical suggestions. The work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada to D.F.S.

References

  1. Al Khateeb WM, Schroeder DF (2007) DDB2, DDB1A and DET1 exhibit complex interactions during Arabidopsis development. Genetics 176:231–242. doi: 10.1534/genetics.107.070359 PubMedCrossRefGoogle Scholar
  2. Alekseev S, Kool H, Rebel H, Fousteri M, Moser J, Backendorf C, Gruijl FR, Vrieling H, Mullenders LH (2005) Enhanced DDB2 expression protects mice from carcinogenic effects of chronic UV-B irradiation. Cancer Res 65:10298–10306. doi: 10.1158/0008-5472.CAN-05-2295 PubMedCrossRefGoogle Scholar
  3. Bernhardt A, Lechner E, Hano P, Schade V, Dieterle M, Marco A, Jody D, Giovanna B, Bowler C, Genschik P, Hellmann H (2006) CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant J 47:591–603. doi: 10.1111/j.1365-313X.2006.02810.x PubMedCrossRefGoogle Scholar
  4. Bray C, West C (2005) DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168:511–528. doi: 10.1111/j.1469-8137.2005.01548.x PubMedCrossRefGoogle Scholar
  5. Britt AB (1995) Repair of DNA damage induced by ultraviolet radiation. Plant Physiol 108:891–896. doi: 10.1104/pp.108.3.891 PubMedCrossRefGoogle Scholar
  6. Britt AB, Chen JJ, Wykoff D, Mitchell D (1993) A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine–pyrimidone (6-4) dimers. Science 261:1571–1574. doi: 10.1126/science.8372351 PubMedCrossRefGoogle Scholar
  7. Caldwell M, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6:252–266. doi: 10.1039/b700019g PubMedCrossRefGoogle Scholar
  8. Cang Y, Zhang J, Nicholas SA, Bastien J, Li B, Zhou P, Goff SP (2006) Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells. Cell 127:929–940. doi: 10.1016/j.cell.2006.09.045 PubMedCrossRefGoogle Scholar
  9. Chen H, Shen Y, Tang X, Yu L, Wang J, Guo L, Zhang Y, Zhang H, Feng S, Strickland E, Zheng N, Deng XW (2006) Arabidopsis CULLIN4 forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell 18:1991–2004. doi: 10.1105/tpc.106.043224 PubMedCrossRefGoogle Scholar
  10. Cleaver J (2005) Cancer in Xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer 5:564–573. doi: 10.1038/nrc1652 PubMedCrossRefGoogle Scholar
  11. Costa R, Morgante P, Berra C, Nakabashi M, Bruneau D, Bouchez D, Sweder K, Van Sluys M, Menck C (2001) The participation of AtXPB1, the XPB/RAD25 homologue gene from Arabidopsis thaliana, in DNA repair and plant development. Plant J 28:385–395. doi: 10.1046/j.1365-313X.2001.01162.x PubMedCrossRefGoogle Scholar
  12. Dany AL, Douki T, Triantaphylides C, Cadet J (2001) Repair of the main UV-induced thymine dimeric lesions within Arabidopsis thaliana DNA: evidence for the major involvement of photoreactivation pathways. J Photochem Photobiol B 65:127–135. doi: 10.1016/S1011-1344(01)00254-8 PubMedCrossRefGoogle Scholar
  13. Datta A, Bagchi S, Nag A, Shiyanov P, Adami GR, Yoon T, Raychaudhuri P (2001) The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase. Mutat Res 486:89–97PubMedGoogle Scholar
  14. Fidantsef AL, Mitchell DL, Britt AB (2000) The Arabidopsis UVH1 gene is a homolog of the yeast repair endonuclease RAD1. Plant Physiol 124:579–586. doi: 10.1104/pp.124.2.579 PubMedCrossRefGoogle Scholar
  15. Folta KM, Kaufman LS (2003) Phototropin 1 is required for high-fluence blue-light-mediated mRNA destabilization. Plant Mol Biol 51:609–618. doi: 10.1023/A:1022393406204 PubMedCrossRefGoogle Scholar
  16. Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428. doi: 10.1104/pp.103.030049 PubMedCrossRefGoogle Scholar
  17. Fujiwara Y, Masutani C, Mizukoshi T, Kondo J, Hanaoka F, Iwai S (1999) Characterization of DNA recognition by the human UV-damaged DNA-binding protein. J Biol Chem 274:20027–20033. doi: 10.1074/jbc.274.28.20027 PubMedCrossRefGoogle Scholar
  18. Gallego F, Fleck O, Li A, Wyrzykowska J, Tinland B (2000) AtRAD1, a plant homologue of human and yeast nucleotide excision repair endonucleases, is involved in dark repair of UV damages and recombination. Plant J 21:507–518. doi: 10.1046/j.1365-313x.2000.00694.x PubMedCrossRefGoogle Scholar
  19. Gillet LC, Scharer OD (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 106:253–276. doi: 10.1021/cr040483f PubMedCrossRefGoogle Scholar
  20. Groisman R, Polanowska J, Kuraoka J, Sawada J, Saijo M, Drapkin R, Kisselev A, Tanaka K, Nakatani Y (2003) The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113:357–367. doi: 10.1016/S0092-8674(03)00316-7 PubMedCrossRefGoogle Scholar
  21. Gutierrez RA, Ewing R, Cherry J, Green P (2002) Identification of unstable transcripts in Arabidopsis by cDNA microarray analysis: rapid decay is associated with a group of touch- and specific clock-controlled genes. Proc Natl Acad Sci USA 99:11513–11518. doi: 10.1073/pnas.152204099 PubMedCrossRefGoogle Scholar
  22. Harlow GR, Jenkins ME, Pittalwala TS, Mount DW (1994) Isolation of uvh1, an Arabidopsis mutant hypersensitive to ultraviolet light and ionizing radiation. Plant Cell 6:227–235PubMedCrossRefGoogle Scholar
  23. He Y, McCall C, Hu J, Zeng Y, Xiong Y (2006) DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4–ROC1 ubiquitin ligases. Genes Dev 20:2949–2954. doi: 10.1101/gad.1483206 PubMedCrossRefGoogle Scholar
  24. Hefner E, Preuss SB, Britt AB (2003) Arabidopsis mutants sensitive to gamma radiation include the homologue of the human repair gene ERCC1. J Exp Bot 54:669–680. doi: 10.1093/jxb/erg069 PubMedCrossRefGoogle Scholar
  25. Hu J, McCall CM, Ohta T, Xiong Y (2004) Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nat Cell Biol 6:1003–1009. doi: 10.1038/ncb1172 PubMedCrossRefGoogle Scholar
  26. Ishibashi T, Seisuke K, Taichi Y, Tomoyuki F, Takata K, Uchiyama Y, Hashimoto J, Sakaguchi K (2003) Rice UV-damaged DNA binding protein homologues are most abundant in proliferating tissues. Gene 308:79–87. doi: 10.1016/S0378-1119(03)00447-5 PubMedCrossRefGoogle Scholar
  27. Ishibashi T, Kimura S, Furukawa T, Sakaguchi K (2006) DNA repair mechanisms in UV-B tolerant plants. Jpn Agric Res Q 40:107–113Google Scholar
  28. Itoh T, Nichols A, Linn S (2001) Abnormal regulation of DDB2 gene expression in xeroderma pigmentosum group E strains. Oncogene 20:7041–7050. doi: 10.1038/sj.onc.1204909 PubMedCrossRefGoogle Scholar
  29. Itoh T, Cado D, Kamide R, Linn S (2004) DDB2 gene disruption leads to skin tumors and resistance to apoptosis after exposure to ultraviolet light but not a chemical carcinogen. Proc Natl Acad Sci USA 101:2052–2057. doi: 10.1073/pnas.0306551101 PubMedCrossRefGoogle Scholar
  30. Jiang CZ, Yee J, Mitchell DL, Britt AB (1997) Photorepair mutants of Arabidopsis. Proc Natl Acad Sci USA 94:7441–7445. doi: 10.1073/pnas.94.14.7441 PubMedCrossRefGoogle Scholar
  31. Kapetanaki MG, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapic-Otrin V, Levine AS (2006) The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci USA 103:2588–2593. doi: 10.1073/pnas.0511160103 PubMedCrossRefGoogle Scholar
  32. Kim Y, Kipreos ET (2007) The Caenorhabditis elegans replication licensing factor CDT-1 is targeted for degradation by the CUL-4/DDB-1 complex. Mol Cell Biol 27:1394–1406. doi: 10.1128/MCB.00736-06 PubMedCrossRefGoogle Scholar
  33. Kimura S, Sakaguchi K (2006) DNA repair in plants. Chem Rev 106:753–766. doi: 10.1021/cr040482n PubMedCrossRefGoogle Scholar
  34. Koga A, Ishibashi T, Kimura S, Uchiyama Y, Sakaguchi K (2006) Characterization of T-DNA insertion mutants and RNAi silenced plants of Arabidopsis thaliana UV-damaged DNA binding protein 2 (AtUV-DDB2). Plant Mol Biol 61:227–240. doi: 10.1007/s11103-006-6408-z PubMedCrossRefGoogle Scholar
  35. Kunz B, Cahil DM, Mohr PG, Osmond MJ, Vonarx EJ (2006) Plant responses to UV radiation and links to pathogen resistance. Int Rev Cytol 225:1–40. doi: 10.1016/S0074-7696(06)55001-6 CrossRefGoogle Scholar
  36. Lee J, Zhou P (2007) DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell 26:775–780. doi: 10.1016/j.molcel.2007.06.001 PubMedCrossRefGoogle Scholar
  37. Lee J, Terzaghi W, Gusmaroli G, Charron J, Yoon H, Chen H, He J, Xiong Y, Deng XW (2008) Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell 20:152–167. doi: 10.1105/tpc.107.055418 PubMedCrossRefGoogle Scholar
  38. Li J, Wang Q, Zhu Q, El-Mahdy MA, Wani G, Praetorius-Ibba M, Wani A (2006) DNA damage binding protein component DDB1 participates in nucleotide excision repair through DDB2 DNA-binding and cullin 4A ubiquitin ligase activity. Cancer Res 66:8590–8597. doi: 10.1158/0008-5472.CAN-06-1115 PubMedCrossRefGoogle Scholar
  39. Liang L, Flury S, Kalck V, Hohn B, Molinier J (2006) CENTRIN2 interacts with the Arabidopsis homolog of the human XPC protein (AtRAD4) and contributes to efficient synthesis-dependent repair of bulky DNA lesions. Plant Mol Biol 61:345–356. doi: 10.1007/s11103-006-0016-9 PubMedCrossRefGoogle Scholar
  40. Lidder P, Gutiérrez RA, Salomé PA, McClung CR, Green PJ (2005) Circadian control of mRNA stability: association with DST-mediated mRNA decay. Plant Physiol 138:2374–2385. doi: 10.1104/pp.105.060368 PubMedCrossRefGoogle Scholar
  41. Lima JF, Malavazi I, da Silva Ferreira M, Savoldi M, Mota A, Capellaro JL, da Souza Goldman MH, Goldman GH (2008) Functional characterization of the putative Aspergillus nidulans DNA damage binding protein homologue DdbA. Mol Genet Genomics 279:239–253. doi: 10.1007/s00438-007-0307-0 PubMedCrossRefGoogle Scholar
  42. Liu Z, Hossain GS, Islas-Osuna MA, Mitchell DL, Mount DW (2000) Repair of UV damage in plants by nucleotide excision repair: Arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1. Plant J 21:519–528. doi: 10.1046/j.1365-313x.2000.00707.x PubMedCrossRefGoogle Scholar
  43. Liu Z, Hall JD, Mount DW (2001) Arabidopsis UVH3 gene is a homolog of the Saccharomyces cerevisiae RAD2 and human XPG DNA repair genes. Plant J 26:329–338. doi: 10.1046/j.1365-313X.2001.01031.x PubMedCrossRefGoogle Scholar
  44. Liu Z, Hong S, Escobar M, Vierling E, Mitchell L, Mount DW, Hall J (2003) Arabidopsis UVH6, a homolog of human XPD and yeast RAD3 DNA repair genes, functions in DNA repair and is essential for plant growth. Plant Physiol 132:1405–1414. doi: 10.1104/pp.103.021808 PubMedCrossRefGoogle Scholar
  45. Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG (2001) Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol 21:6782–6795. doi: 10.1128/MCB.21.20.6782-6795.2001 PubMedCrossRefGoogle Scholar
  46. Molinier J, Ramos C, Fritsch O, Hohn B (2004) CENTRIN2 modulates homologous recombination and nucleotide excision repair in Arabidopsis. Plant Cell 16:1633–1643. doi: 10.1105/tpc.021378 PubMedCrossRefGoogle Scholar
  47. Molinier J, Lechner E, Dumbliauskas E, Genschik P (2008) Regulation and role of Arabidopsis CUL4-DDB1A-DDB2 in maintaining genome integrity upon UV stress. PLoS Genet 4:e1000093. doi: 10.1371/journal.pgen.1000093 PubMedCrossRefGoogle Scholar
  48. Morgante PG, Berra CM, Nakabashi M, Costa RM, Menck CF, Van Sluys M (2005) Functional XPB/RAD25 redundancy in Arabidopsis genome: characterization of AtXPB2 and expression analysis. Gene 344:93–103. doi: 10.1016/j.gene.2004.10.006 PubMedCrossRefGoogle Scholar
  49. Nichols AF, Itoh T, Graham JA, Liu W, Yamaizumi M, Linn S (2000) Human damage-specific DNA-binding protein p48. Characterization of XPE mutations and regulation following UV irradiation. J Biol Chem 275:21422–21428. doi: 10.1074/jbc.M000960200 PubMedCrossRefGoogle Scholar
  50. Rapic-Otrin V, McLenigan MP, Bisi DC, Gonzalez M, Levine AS (2002) Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation. Nucleic Acids Res 30:2588–2598. doi: 10.1093/nar/30.11.2588 PubMedCrossRefGoogle Scholar
  51. Revenkova E, Masson J, Koncz C, Afsar K, Jakovleva L, Paszkowski J (1999) Involvement of Arabidopsis thaliana ribosomal protein S27 in mRNA degradation triggered by genotoxic stress. EMBO J 18:490–499. doi: 10.1093/emboj/18.2.490 PubMedCrossRefGoogle Scholar
  52. Schneider BL, Seufert W, Steiner B, Yang QH, Futcher AB (1995) Use of polymerase chain-reaction epitope tagging for protein tagging in Saccharomyces cerevisiae. Yeast 11:1265–1274. doi: 10.1002/yea.320111306 PubMedCrossRefGoogle Scholar
  53. Schroeder DF, Gahrtz M, Maxwell BB, Cook RK, Kan JM, Alonso JM, Ecker JR, Chory J (2002) De-etiolated 1 (DET1) and damaged DNA binding protein 1 (DDB1) interact to regulate Arabidopsis photomorphogenesis. Curr Biol 12:1462–1472. doi: 10.1016/S0960-9822(02)01106-5 PubMedCrossRefGoogle Scholar
  54. Scrima A, Konícková R, Czyzewski BK, Kawasaki Y, Jeffrey PD, Groisman R, Nakatani Y, Iwai S, Pavletich NP, Thomä NH (2008) Structural basis of UV DNA-damage recognition by the DDB1–DDB2 complex. Cell 135:1213–1223. doi: 10.1016/j.cell.2008.10.045 PubMedCrossRefGoogle Scholar
  55. Shuck SC, Short EA, Turchi JJ (2008) Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 18:64–72. doi: 10.1038/cr.2008.2 PubMedCrossRefGoogle Scholar
  56. Sugasawa K (2006) UV-induced ubiquitylation of XPC complex, the UV-DDB-ubiquitin ligase complex, and DNA repair. J Mol Histol 37:189–202. doi: 10.1007/s10735-006-9044-7 PubMedCrossRefGoogle Scholar
  57. Sun CL, Chao CC (2005) Cross-resistance to death ligand-induced apoptosis in cisplatin-selected HeLa cells associated with overexpression of DDB2 and subsequent induction of cFLIP. Mol Pharmacol 67:1307–1314. doi: 10.1124/mol.104.008797 PubMedCrossRefGoogle Scholar
  58. Sun NK, Lu HP, Chao CC (2002) Overexpression of damaged-DNA-binding protein 2 (DDB2) potentiates UV resistance in hamster V79 cells. Chang Gung Med J 25:723–733PubMedGoogle Scholar
  59. Takata K, Yoshida H, Yamaguchi M, Sakaguchi K (2004) Drosophila damaged DNA-binding protein 1 is an essential factor for development. Genetics 168:855–865. doi: 10.1534/genetics.103.025965 PubMedCrossRefGoogle Scholar
  60. Takeuchi Y, Murakami M, Nakajima N, Kondo N, Nikaido O (1996) Induction and repair of damage to DNA in cucumber cotyledons irradiated with UV-B. Plant Cell Physiol 37:181–187Google Scholar
  61. Vonarx EJ, Tabone EK, Osmond MJ, Anderson HJ, Kunz BA (2006) Arabidopsis homologue of human transcription factor IIH/nucleotide excision repair factor p44 can function in transcription and DNA repair and interacts with AtXPD. Plant J 46:512–521. doi: 10.1111/j.1365-313X.2006.02705.x PubMedCrossRefGoogle Scholar
  62. Wakasugi M, Matsuura K, Nagasawa A, Fu D, Shimizu H, Yamamoto K, Takeda S, Matsunaga T (2007) DDB1 gene disruption causes a severe growth defect and apoptosis in chicken DT40 cells. Biochem Biophys Res Commun 364:771–777. doi: 10.1016/j.bbrc.2007.10.063 PubMedCrossRefGoogle Scholar
  63. Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  64. Wertz I, O’Rourke K, Zhang Z, Dornan D, Arnott D, Deshaies R, Dixit V (2004) Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303:1371–1374. doi: 10.1126/science.1093549 PubMedCrossRefGoogle Scholar
  65. Wittschieben BO, Iwai S, Wood RD (2005) DDB1–DDB2 (Xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA. J Biol Chem 280:39982–39989. doi: 10.1074/jbc.M507854200 PubMedCrossRefGoogle Scholar
  66. Yakir E, Hilman D, Hassidim M, Green R (2007) CIRCADIAN CLOCK ASSOCIATED1 transcript stability and the entrainment of the circadian clock in Arabidopsis. Plant Physiol 145:925–932. doi: 10.1104/pp.107.103812 PubMedCrossRefGoogle Scholar
  67. Zhang Y, Feng S, Chen F, Chen H, Wang J, McCall C, Xiong Y, Deng XW (2008) Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell 20:1437–1455. doi: 10.1105/tpc.108.058891 PubMedCrossRefGoogle Scholar
  68. Zolezzi F, Fuss J, Uzawa S, Linn S (2002) Characterization of a Schizosaccharomyces pombe strain deleted for a sequence homologue of the human damaged DNA binding 1 (DDB1) gene. J Biol Chem 277:41183–41191. doi: 10.1074/jbc.M207890200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of ManitobaWinnipegCanada
  2. 2.Department of Biological SciencesYarmouk UniversityIrbidJordan

Personalised recommendations