Skip to main content
Log in

Functional analyses of the ABI1-related protein phosphatase type 2C reveal evolutionarily conserved regulation of abscisic acid signaling between Arabidopsis and the moss Physcomitrella patens

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We employed a comparative genomic approach to understand protein phosphatase 2C (PP2C)-mediated abscisic acid (ABA) signaling in the moss Physcomitrella patens. Ectopic expression of Arabidopsis (Arabidopsis thaliana) abi1-1, a dominant mutant allele of ABI1 encoding a PP2C involved in the negative regulation of ABA signaling, caused ABA insensitivity of P. patens both in gene expression of late embryogenesis abundant (LEA) genes and in ABA-induced protonemal growth inhibition. The transgenic abi1-1 plants showed decreased ABA-induced freezing tolerance, and decreased tolerance to osmotic stress. Analyses of the P. patens genome revealed that only two (PpABI1A and PpABI1B) PP2C genes were related to ABI1. In the ppabi1a null mutants, ABA-induced expression of LEA genes was elevated, and protonemal growth was inhibited with lower ABA concentration compared to the wild type. Moreover, ABA-induced freezing tolerance of the ppabi1a mutants was markedly enhanced. We provide the genetic evidence that PP2C-mediated ABA signaling is evolutionarily conserved between Arabidopsis and P. patens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABI:

ABA-insensitive

ABRE:

ABA-response element

DRE:

Drought-responsive element

GUS:

β-Glucuronidase

JA:

Jasmonic acid

LEA:

Late embryogenesis abundant

MPK:

Mitogen-activated protein kinase

PP2C:

Protein phosphatase 2C

References

  • Adachi J, Hasegawa M (1996) MOLPHY version 2.3: programs for molecular phylogenetics based on maximum likelihood. The Institute of Statistical Mathematics, Tokyo

    Google Scholar 

  • Armstrong F, Leung J, Grabov A, Brearley J, Giraudat J, Blatt MR (1995) Sensitivity to abscisic acid of guard-cell K+ channels is suppressed by abi1-1, a mutant Arabidopsis gene encoding a putative protein phosphatase. Proc Natl Acad Sci USA 92:9520–9524. doi:10.1073/pnas.92.21.9520

    Article  PubMed  CAS  Google Scholar 

  • Bertauche N, Leung J, Giraudat J (1996) Protein phosphatase activity of abscisic acid insensitive 1 (ABI1) protein from Arabidopsis thaliana. Eur J Biochem 241:193–200. doi:10.1111/j.1432-1033.1996.0193t.x

    Article  PubMed  CAS  Google Scholar 

  • Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34:67–75. doi:10.1046/j.1365-313X.2003.01707.x

    Article  PubMed  CAS  Google Scholar 

  • Carrera E, Prat S (1998) Expression of the Arabidopsis abi1-1 mutant allele inhibits proteinase inhibitor wound-induction in tomato. Plant J 15:765–771. doi:10.1046/j.1365-313X.1998.00261.x

    Article  PubMed  CAS  Google Scholar 

  • Casaretto J, Ho TH (2003) The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15:271–284. doi:10.1105/tpc.007096

    Article  PubMed  CAS  Google Scholar 

  • Cherel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H et al (2002) Physical and functional interaction of the Arabidopsis K(+) channel AKT2 and phosphatase AtPP2CA. Plant Cell 14:1133–1146. doi:10.1105/tpc.000943

    Article  PubMed  CAS  Google Scholar 

  • Cove D, Knight CD, Lamparter T (1997) Mosses as model systems. Trends Plant Sci 2:99–105. doi:10.1016/S1360-1385(96)10056-X

    Article  Google Scholar 

  • Cove D, Benzanilla M, Harries P, Quatrano R (2006) Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57:497–520

    Article  PubMed  CAS  Google Scholar 

  • Cuming AC, Cho SH, Kamisugi Y, Graham H, Quatrano RS (2007) Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. New Phytol 176:275–287. doi:10.1111/j.1469-8137.2007.02187.x

    Article  PubMed  CAS  Google Scholar 

  • De Smet I, Signora L, Beeckman T, Inzé D, Foyer CH, Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555. doi:10.1046/j.1365-313X.2003.01652.x

    Article  PubMed  Google Scholar 

  • Decker EL, Frank W, Sarnighausen E, Reski R (2006) Moss systems biology en route: phytohormones in Physcomitrella development. Plant Biol Stuttg 8:397–405. doi:10.1055/s-2006-923952

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Rock CD (2002) Abscisic acid biosynthesis and response. The Arabidopsis book. American Society of Plant Biologists, Rockville. doi:10.1199/tab.0058. www.aspb.org/publications/arabidopsis/

  • Finkelstein RR, Somerville CR (1990) Three classes of abscisic acid (ABA)-insensitive mutations of Arabidopsis define genes that control overlapping subsets of ABA responses. Plant Physiol 94:1172–1179. doi:10.1104/pp.94.3.1172

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl):S15–S45

    PubMed  CAS  Google Scholar 

  • Frank W, Holtorf H, Reski R (2005a) Functional genomics in Physcomitrella. In: Leister D (ed) Plant functional genomics. The Haworth Press, New York, pp 203–234

    Google Scholar 

  • Frank W, Ratnadewi D, Reski R (2005b) Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta 220:384–394. doi:10.1007/s00425-004-1351-1

    Article  PubMed  CAS  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Goode JA, Stead AD, Duckett JG (1993) Redifferentiation of moss protonemata: an experimental and immunofluorescence study of brood cell formation. Can J Bot 71:1510–1519

    Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1910

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Xiong L, Song CP, Gong D, Halfter U, Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233–244. doi:10.1016/S1534-5807(02)00229-0

    Article  PubMed  CAS  Google Scholar 

  • Hagenbeek D, Quatrano RS, Rock CD (2000) Trivalent ions activate abscisic acid-inducible promoters through an ABI1-dependent pathway in rice protoplasts. Plant Physiol 123:1553–1560. doi:10.1104/pp.123.4.1553

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Kishino H (1994) Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree. Mol Biol Evol 11:142–145

    CAS  Google Scholar 

  • Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21:3029–3038. doi:10.1093/emboj/cdf316

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 275(8):275–282

    Google Scholar 

  • Kamisugi Y, Cuming AC (2005) The evolution of the abscisic acid-response in land plants: comparative analysis of group 1 LEA gene expression in moss and cereals. Plant Mol Biol 59:723–737. doi:10.1007/s11103-005-0909-z

    Article  PubMed  CAS  Google Scholar 

  • Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518. doi:10.1093/nar/gki198

    Article  PubMed  CAS  Google Scholar 

  • Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 31:151. doi:10.1007/BF02109483

    Article  CAS  Google Scholar 

  • Knight CD, Sehgal A, Atwal K, Wallace JC, Cove DJ, Coates D et al (1995) Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell 7:499–506

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383. doi:10.1111/j.1399-3054.1984.tb06343.x

    Article  CAS  Google Scholar 

  • Kuhn JM, Boisson-Dernier A, Dizon MB, Maktabi MH, Schroeder JI (2006) The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol 140:127–139. doi:10.1104/pp.105.070318

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Bouvier-Durand M, Morris PC, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264:1448–1452. doi:10.1126/science.7910981

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    Article  PubMed  CAS  Google Scholar 

  • Marella HH, Sakata Y, Quatrano RS (2006) Characterization and functional analysis of ABSCISIC ACID INSENSITIVE3-like genes from Physcomitrella patens. Plant J 46:1032–1044. doi:10.1111/j.1365-313X.2006.02764.x

    Article  PubMed  CAS  Google Scholar 

  • McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    Article  PubMed  CAS  Google Scholar 

  • Meyer K, Leube MP, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264:1452–1455. doi:10.1126/science.8197457

    Article  PubMed  CAS  Google Scholar 

  • Minami A, Nagao M, Arakawa K, Fujikawa S, Takezawa D (2003) Abscisic acid-induced freezing tolerance in the moss Physcomitrella patens is accompanied by increased expression of stress-related genes. J Plant Physiol 160:475–483. doi:10.1078/0176-1617-00888

    Article  PubMed  CAS  Google Scholar 

  • Minami A, Nagao M, Ikegami K, Koshiba T, Arakawa K, Fujikawa S et al (2005) Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta 220:414–423. doi:10.1007/s00425-004-1361-z

    Article  PubMed  CAS  Google Scholar 

  • Moes D, Himmelbach A, Korte A, Haberer G, Grill E (2008) Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. Plant J 54:806–819. doi:10.1111/j.1365-313X.2008.03454.x

    Article  PubMed  CAS  Google Scholar 

  • Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T (2007) ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J 50(6):935–949

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama T, Hiwatashi Y, Sakakibara I, Kato M, Hasebe M (2000) Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis. DNA Res 7:9–17. doi:10.1093/dnares/7.1.9

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama T, Fujita T, Shin IT, Seki M, Nishide H, Uchiyama I et al (2003) Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proc Natl Acad Sci USA 100:8007–8012. doi:10.1073/pnas.0932694100

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Guo Y, Halfter U, Zhu JK (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci USA 100:11771–11776. doi:10.1073/pnas.2034853100

    Article  PubMed  CAS  Google Scholar 

  • Perroud PF, Quatrano RS (2006) The role of ARPC4 in tip growth and alignment of the polar axis in filaments of Physcomitrella patens. Cell Motil Cytoskeleton 63:162–171. doi:10.1002/cm.20114

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta 975:384–394

    Article  CAS  Google Scholar 

  • Quatrano RS, McDaniel SF, Khandelwal A, Perroud P-F, Cove DJ (2007) Physcomitrella patens: mosses enter the genomic age. Curr Opin Plant Biol 10:182. doi:10.1016/j.pbi.2007.01.005

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69. doi:10.1126/science.1150646

    Article  PubMed  CAS  Google Scholar 

  • Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O et al (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J 37:354–369. doi:10.1046/j.1365-313X.2003.01966.x

    Article  PubMed  CAS  Google Scholar 

  • Saez A, Robert N, Maktabi MH, Schroeder JI, Serrano R, Rodriguez PL (2006) Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB1. Plant Physiol 141:1389–1399. doi:10.1104/pp.106.081018

    Article  PubMed  CAS  Google Scholar 

  • Schaefer DG, Zrÿd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206. doi:10.1046/j.1365-313X.1997.11061195.x

    Article  PubMed  CAS  Google Scholar 

  • Schaefer DG, Zrÿd JP (2001) The moss Physcomitrella patens, now and then. Plant Physiol 127:1430–1438. doi:10.1104/pp.010786

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236. doi:10.1016/j.tplants.2004.03.007

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H et al (2007) The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell 19:2213–2224. doi:10.1105/tpc.106.049585

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1998) Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc Natl Acad Sci USA 95:975–980. doi:10.1073/pnas.95.3.975

    Article  PubMed  CAS  Google Scholar 

  • Tähtiharju S, Palva T (2001) Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J 26:461–470. doi:10.1046/j.1365-313X.2001.01048.x

    Article  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36. doi:10.1104/pp.103.025395

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006a) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318. doi:10.1074/jbc.M509820200

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T et al (2006b) ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol 140:115–126. doi:10.1104/pp.105.070128

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513. doi:10.1073/pnas.0402112101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tuan-hua David Ho and Dr. Jose Casaretto for providing DNA constructs of 35S-abi1-1 and Ubi-LUC, and Dr. Daisuke Takezawa for technical assistance with the freezing experiments and for his valuable advice. This work was supported by a JSPS Postdoctoral Fellowship for Research Abroad to Y.S., the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B) to Y.S., and the Science Research Promotion Fund (2007) by the Promotion and Mutual Aid Corporation for Private Schools of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Sakata.

Additional information

Accession Numbers: PpABI1A-AB369256, PpABI1B-AB369255, pphn39k21-AB369257.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Primers used. Supplementary material 1 (DOC 53 kb)

Fig. S1

Comparison of methods for measurement of protonemata growth. a Wild type protonemata were grown for 2 weeks on BCDAT medium, which contained various concentration of ABA. b Growth of protonemal colonies shown in (a) was determined by the image analysis software (black bars), or chlorophyll contents (white bars). Values are means ± SE (n = 21). Scale bars: 10 mm. Supplementary material 2 (EPS 7582 kb)

Fig. S2

The exon–intron structures of the ABI1, PpABI1A and PpABI1B genes. Untranslated regions, coding regions, and introns are represented by open boxes, filled boxes and horizontal thick lines, respectively. The arrowhead indicates the position of the Gly residue mutated in the abi1-1 allele. Numbers show the nucleotide positions from the 5′ end of the cDNAs. Supplementary material 3 (EPS 565 kb)

Fig. S3

Comparison of the amino acid sequences of ABI1, PpABI1A and PpABI1B. Amino acid sequences of ABI1, PpABI1A and PpABI1B were aligned using the T-COFFEE program (http://igs-server.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi). Identical amino acids are marked with asterisks (*), strongly similar amino acids are marked with two dots (:), and weakly similar amino acids are marked with one dot (·). Colors indicate alignment quality in a regional context. The PP2C domain is underlined in black. The arrowheads indicate two Gly residues in the catalytic domain of ABI1 that correlated with regulation of ABA signaling. Supplementary material 4 (EPS 3126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komatsu, K., Nishikawa, Y., Ohtsuka, T. et al. Functional analyses of the ABI1-related protein phosphatase type 2C reveal evolutionarily conserved regulation of abscisic acid signaling between Arabidopsis and the moss Physcomitrella patens . Plant Mol Biol 70, 327–340 (2009). https://doi.org/10.1007/s11103-009-9476-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9476-z

Keywords

Navigation