Plant Molecular Biology

, Volume 70, Issue 3, pp 327–340 | Cite as

Functional analyses of the ABI1-related protein phosphatase type 2C reveal evolutionarily conserved regulation of abscisic acid signaling between Arabidopsis and the moss Physcomitrella patens

  • Kenji Komatsu
  • Yuri Nishikawa
  • Tomohito Ohtsuka
  • Teruaki Taji
  • Ralph S. Quatrano
  • Shigeo Tanaka
  • Yoichi Sakata


We employed a comparative genomic approach to understand protein phosphatase 2C (PP2C)-mediated abscisic acid (ABA) signaling in the moss Physcomitrella patens. Ectopic expression of Arabidopsis (Arabidopsis thaliana) abi1-1, a dominant mutant allele of ABI1 encoding a PP2C involved in the negative regulation of ABA signaling, caused ABA insensitivity of P. patens both in gene expression of late embryogenesis abundant (LEA) genes and in ABA-induced protonemal growth inhibition. The transgenic abi1-1 plants showed decreased ABA-induced freezing tolerance, and decreased tolerance to osmotic stress. Analyses of the P. patens genome revealed that only two (PpABI1A and PpABI1B) PP2C genes were related to ABI1. In the ppabi1a null mutants, ABA-induced expression of LEA genes was elevated, and protonemal growth was inhibited with lower ABA concentration compared to the wild type. Moreover, ABA-induced freezing tolerance of the ppabi1a mutants was markedly enhanced. We provide the genetic evidence that PP2C-mediated ABA signaling is evolutionarily conserved between Arabidopsis and P. patens.


ABI1 Abscisic acid Gene targeting Negative regulation Physcomitrella patens PP2C 



Abscisic acid




ABA-response element


Drought-responsive element




Jasmonic acid


Late embryogenesis abundant


Mitogen-activated protein kinase


Protein phosphatase 2C



We thank Dr. Tuan-hua David Ho and Dr. Jose Casaretto for providing DNA constructs of 35S-abi1-1 and Ubi-LUC, and Dr. Daisuke Takezawa for technical assistance with the freezing experiments and for his valuable advice. This work was supported by a JSPS Postdoctoral Fellowship for Research Abroad to Y.S., the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B) to Y.S., and the Science Research Promotion Fund (2007) by the Promotion and Mutual Aid Corporation for Private Schools of Japan.

Supplementary material

11103_2009_9476_MOESM1_ESM.doc (52 kb)
Table S1 Primers used. Supplementary material 1 (DOC 53 kb)
11103_2009_9476_MOESM2_ESM.eps (7.4 mb)
Fig. S1 Comparison of methods for measurement of protonemata growth. a Wild type protonemata were grown for 2 weeks on BCDAT medium, which contained various concentration of ABA. b Growth of protonemal colonies shown in (a) was determined by the image analysis software (black bars), or chlorophyll contents (white bars). Values are means ± SE (n = 21). Scale bars: 10 mm. Supplementary material 2 (EPS 7582 kb)
11103_2009_9476_MOESM3_ESM.eps (565 kb)
Fig. S2 The exon–intron structures of the ABI1, PpABI1A and PpABI1B genes. Untranslated regions, coding regions, and introns are represented by open boxes, filled boxes and horizontal thick lines, respectively. The arrowhead indicates the position of the Gly residue mutated in the abi1-1 allele. Numbers show the nucleotide positions from the 5′ end of the cDNAs. Supplementary material 3 (EPS 565 kb)
11103_2009_9476_MOESM4_ESM.eps (3.1 mb)
Fig. S3 Comparison of the amino acid sequences of ABI1, PpABI1A and PpABI1B. Amino acid sequences of ABI1, PpABI1A and PpABI1B were aligned using the T-COFFEE program ( Identical amino acids are marked with asterisks (*), strongly similar amino acids are marked with two dots (:), and weakly similar amino acids are marked with one dot (·). Colors indicate alignment quality in a regional context. The PP2C domain is underlined in black. The arrowheads indicate two Gly residues in the catalytic domain of ABI1 that correlated with regulation of ABA signaling. Supplementary material 4 (EPS 3126 kb)


  1. Adachi J, Hasegawa M (1996) MOLPHY version 2.3: programs for molecular phylogenetics based on maximum likelihood. The Institute of Statistical Mathematics, TokyoGoogle Scholar
  2. Armstrong F, Leung J, Grabov A, Brearley J, Giraudat J, Blatt MR (1995) Sensitivity to abscisic acid of guard-cell K+ channels is suppressed by abi1-1, a mutant Arabidopsis gene encoding a putative protein phosphatase. Proc Natl Acad Sci USA 92:9520–9524. doi: 10.1073/pnas.92.21.9520 PubMedCrossRefGoogle Scholar
  3. Bertauche N, Leung J, Giraudat J (1996) Protein phosphatase activity of abscisic acid insensitive 1 (ABI1) protein from Arabidopsis thaliana. Eur J Biochem 241:193–200. doi: 10.1111/j.1432-1033.1996.0193t.x PubMedCrossRefGoogle Scholar
  4. Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34:67–75. doi: 10.1046/j.1365-313X.2003.01707.x PubMedCrossRefGoogle Scholar
  5. Carrera E, Prat S (1998) Expression of the Arabidopsis abi1-1 mutant allele inhibits proteinase inhibitor wound-induction in tomato. Plant J 15:765–771. doi: 10.1046/j.1365-313X.1998.00261.x PubMedCrossRefGoogle Scholar
  6. Casaretto J, Ho TH (2003) The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15:271–284. doi: 10.1105/tpc.007096 PubMedCrossRefGoogle Scholar
  7. Cherel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H et al (2002) Physical and functional interaction of the Arabidopsis K(+) channel AKT2 and phosphatase AtPP2CA. Plant Cell 14:1133–1146. doi: 10.1105/tpc.000943 PubMedCrossRefGoogle Scholar
  8. Cove D, Knight CD, Lamparter T (1997) Mosses as model systems. Trends Plant Sci 2:99–105. doi: 10.1016/S1360-1385(96)10056-X CrossRefGoogle Scholar
  9. Cove D, Benzanilla M, Harries P, Quatrano R (2006) Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57:497–520PubMedCrossRefGoogle Scholar
  10. Cuming AC, Cho SH, Kamisugi Y, Graham H, Quatrano RS (2007) Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. New Phytol 176:275–287. doi: 10.1111/j.1469-8137.2007.02187.x PubMedCrossRefGoogle Scholar
  11. De Smet I, Signora L, Beeckman T, Inzé D, Foyer CH, Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555. doi: 10.1046/j.1365-313X.2003.01652.x PubMedCrossRefGoogle Scholar
  12. Decker EL, Frank W, Sarnighausen E, Reski R (2006) Moss systems biology en route: phytohormones in Physcomitrella development. Plant Biol Stuttg 8:397–405. doi: 10.1055/s-2006-923952 PubMedCrossRefGoogle Scholar
  13. Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609PubMedCrossRefGoogle Scholar
  14. Finkelstein RR, Rock CD (2002) Abscisic acid biosynthesis and response. The Arabidopsis book. American Society of Plant Biologists, Rockville. doi: 10.1199/tab.0058.
  15. Finkelstein RR, Somerville CR (1990) Three classes of abscisic acid (ABA)-insensitive mutations of Arabidopsis define genes that control overlapping subsets of ABA responses. Plant Physiol 94:1172–1179. doi: 10.1104/pp.94.3.1172 PubMedCrossRefGoogle Scholar
  16. Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10:1043–1054PubMedCrossRefGoogle Scholar
  17. Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl):S15–S45PubMedGoogle Scholar
  18. Frank W, Holtorf H, Reski R (2005a) Functional genomics in Physcomitrella. In: Leister D (ed) Plant functional genomics. The Haworth Press, New York, pp 203–234Google Scholar
  19. Frank W, Ratnadewi D, Reski R (2005b) Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta 220:384–394. doi: 10.1007/s00425-004-1351-1 PubMedCrossRefGoogle Scholar
  20. Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261PubMedCrossRefGoogle Scholar
  21. Goode JA, Stead AD, Duckett JG (1993) Redifferentiation of moss protonemata: an experimental and immunofluorescence study of brood cell formation. Can J Bot 71:1510–1519Google Scholar
  22. Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1910PubMedCrossRefGoogle Scholar
  23. Guo Y, Xiong L, Song CP, Gong D, Halfter U, Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233–244. doi: 10.1016/S1534-5807(02)00229-0 PubMedCrossRefGoogle Scholar
  24. Hagenbeek D, Quatrano RS, Rock CD (2000) Trivalent ions activate abscisic acid-inducible promoters through an ABI1-dependent pathway in rice protoplasts. Plant Physiol 123:1553–1560. doi: 10.1104/pp.123.4.1553 PubMedCrossRefGoogle Scholar
  25. Hasegawa M, Kishino H (1994) Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree. Mol Biol Evol 11:142–145Google Scholar
  26. Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21:3029–3038. doi: 10.1093/emboj/cdf316 PubMedCrossRefGoogle Scholar
  27. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 275(8):275–282Google Scholar
  28. Kamisugi Y, Cuming AC (2005) The evolution of the abscisic acid-response in land plants: comparative analysis of group 1 LEA gene expression in moss and cereals. Plant Mol Biol 59:723–737. doi: 10.1007/s11103-005-0909-z PubMedCrossRefGoogle Scholar
  29. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518. doi: 10.1093/nar/gki198 PubMedCrossRefGoogle Scholar
  30. Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 31:151. doi: 10.1007/BF02109483 CrossRefGoogle Scholar
  31. Knight CD, Sehgal A, Atwal K, Wallace JC, Cove DJ, Coates D et al (1995) Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell 7:499–506PubMedCrossRefGoogle Scholar
  32. Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383. doi: 10.1111/j.1399-3054.1984.tb06343.x CrossRefGoogle Scholar
  33. Kuhn JM, Boisson-Dernier A, Dizon MB, Maktabi MH, Schroeder JI (2006) The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol 140:127–139. doi: 10.1104/pp.105.070318 PubMedCrossRefGoogle Scholar
  34. Leung J, Bouvier-Durand M, Morris PC, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264:1448–1452. doi: 10.1126/science.7910981 PubMedCrossRefGoogle Scholar
  35. Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771PubMedCrossRefGoogle Scholar
  36. Marella HH, Sakata Y, Quatrano RS (2006) Characterization and functional analysis of ABSCISIC ACID INSENSITIVE3-like genes from Physcomitrella patens. Plant J 46:1032–1044. doi: 10.1111/j.1365-313X.2006.02764.x PubMedCrossRefGoogle Scholar
  37. McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171PubMedCrossRefGoogle Scholar
  38. Meyer K, Leube MP, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264:1452–1455. doi: 10.1126/science.8197457 PubMedCrossRefGoogle Scholar
  39. Minami A, Nagao M, Arakawa K, Fujikawa S, Takezawa D (2003) Abscisic acid-induced freezing tolerance in the moss Physcomitrella patens is accompanied by increased expression of stress-related genes. J Plant Physiol 160:475–483. doi: 10.1078/0176-1617-00888 PubMedCrossRefGoogle Scholar
  40. Minami A, Nagao M, Ikegami K, Koshiba T, Arakawa K, Fujikawa S et al (2005) Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta 220:414–423. doi: 10.1007/s00425-004-1361-z PubMedCrossRefGoogle Scholar
  41. Moes D, Himmelbach A, Korte A, Haberer G, Grill E (2008) Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. Plant J 54:806–819. doi: 10.1111/j.1365-313X.2008.03454.x PubMedCrossRefGoogle Scholar
  42. Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T (2007) ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J 50(6):935–949PubMedCrossRefGoogle Scholar
  43. Nishiyama T, Hiwatashi Y, Sakakibara I, Kato M, Hasebe M (2000) Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis. DNA Res 7:9–17. doi: 10.1093/dnares/7.1.9 PubMedCrossRefGoogle Scholar
  44. Nishiyama T, Fujita T, Shin IT, Seki M, Nishide H, Uchiyama I et al (2003) Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proc Natl Acad Sci USA 100:8007–8012. doi: 10.1073/pnas.0932694100 PubMedCrossRefGoogle Scholar
  45. Ohta M, Guo Y, Halfter U, Zhu JK (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci USA 100:11771–11776. doi: 10.1073/pnas.2034853100 PubMedCrossRefGoogle Scholar
  46. Perroud PF, Quatrano RS (2006) The role of ARPC4 in tip growth and alignment of the polar axis in filaments of Physcomitrella patens. Cell Motil Cytoskeleton 63:162–171. doi: 10.1002/cm.20114 PubMedCrossRefGoogle Scholar
  47. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta 975:384–394CrossRefGoogle Scholar
  48. Quatrano RS, McDaniel SF, Khandelwal A, Perroud P-F, Cove DJ (2007) Physcomitrella patens: mosses enter the genomic age. Curr Opin Plant Biol 10:182. doi: 10.1016/j.pbi.2007.01.005 PubMedCrossRefGoogle Scholar
  49. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69. doi: 10.1126/science.1150646 PubMedCrossRefGoogle Scholar
  50. Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O et al (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J 37:354–369. doi: 10.1046/j.1365-313X.2003.01966.x PubMedCrossRefGoogle Scholar
  51. Saez A, Robert N, Maktabi MH, Schroeder JI, Serrano R, Rodriguez PL (2006) Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB1. Plant Physiol 141:1389–1399. doi: 10.1104/pp.106.081018 PubMedCrossRefGoogle Scholar
  52. Schaefer DG, Zrÿd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206. doi: 10.1046/j.1365-313X.1997.11061195.x PubMedCrossRefGoogle Scholar
  53. Schaefer DG, Zrÿd JP (2001) The moss Physcomitrella patens, now and then. Plant Physiol 127:1430–1438. doi: 10.1104/pp.010786 PubMedCrossRefGoogle Scholar
  54. Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236. doi: 10.1016/j.tplants.2004.03.007 PubMedCrossRefGoogle Scholar
  55. Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H et al (2007) The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell 19:2213–2224. doi: 10.1105/tpc.106.049585 PubMedCrossRefGoogle Scholar
  56. Sheen J (1998) Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc Natl Acad Sci USA 95:975–980. doi: 10.1073/pnas.95.3.975 PubMedCrossRefGoogle Scholar
  57. Tähtiharju S, Palva T (2001) Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J 26:461–470. doi: 10.1046/j.1365-313X.2001.01048.x PubMedCrossRefGoogle Scholar
  58. Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36. doi: 10.1104/pp.103.025395 PubMedCrossRefGoogle Scholar
  59. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264PubMedCrossRefGoogle Scholar
  60. Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006a) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318. doi: 10.1074/jbc.M509820200 PubMedCrossRefGoogle Scholar
  61. Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T et al (2006b) ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol 140:115–126. doi: 10.1104/pp.105.070128 PubMedCrossRefGoogle Scholar
  62. Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513. doi: 10.1073/pnas.0402112101 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Kenji Komatsu
    • 1
  • Yuri Nishikawa
    • 1
  • Tomohito Ohtsuka
    • 1
  • Teruaki Taji
    • 1
  • Ralph S. Quatrano
    • 2
  • Shigeo Tanaka
    • 1
  • Yoichi Sakata
    • 1
  1. 1.Department of BioscienceTokyo University of AgricultureTokyoJapan
  2. 2.Department of BiologyWashington UniversitySt. LouisUSA

Personalised recommendations