Plant Molecular Biology

, Volume 70, Issue 1–2, pp 123–137 | Cite as

The Ogura sterility-inducing protein forms a large complex without interfering with the oxidative phosphorylation components in rapeseed mitochondria

  • Yann Duroc
  • Sophie Hiard
  • Nathalie Vrielynck
  • Sandrine Ragu
  • Françoise Budar


The Ogura cytoplasmic male sterility causing protein, ORF138, was found to be part of a complex with an apparent size of over 750 kDa in the inner membrane of mitochondria of sterile plants. ORF138 did not colocalize with any of the oxidative phosphorylation complexes, nor did its presence modify their apparent size or amount, compared to samples from fertile isogenic plants. We attempted to detect potential proteins or nucleic acids that could be involved in the large ORF138 complex by 2D PAGE, immunoprecipitation and nuclease treatments of native extracts. All our results suggest that the ORF138 protein is the main, if not only, component of this large complex. The capacities of complexes I, II, IV, and ATP synthase were identical in samples from sterile and fertile plants. Isolated mitochondria from sterile plants showed a higher oxygen consumption than those from fertile plants. In vivo respiration measurements suggest that the difference in O2 consumption measured at the organelle level is compensated at the cell/tissue level, completely in leaves, but only partially in male reproductive organs.


Blue native polyacrylamide gel electrophoresis Cytoplasmic male sterility Mitochondria Protein complex Oxidative phosphorylation 



Blue native polyacrylamide gel electrophoresis


Cytoplasmic male sterility


Chaperone 60


nDodecyl ßD maltoside


Liquid chromatography tandem mass spectrometry






Tandem affinity purification





We thank A. Martin-Canadell for growing the many plants that provided excellent starting material for the production of mitochondrial extracts. We are grateful to G. Bonnard and H. Fromm for the generous gift of antibodies against CPN60 and PHB, respectively. We thank B. Valot and L. Negroni, from the proteomics platform at the IFR87, for their help with the LC-MS/MS analyses. We are very grateful to G. Tcherkez and P. Gauthier, from the metabolomic platform at IFR87, for allowing us to use the Licor device and for their advice and help with gas exchange measurements. We thank M. Gonneau and H. Mireau for helpful and stimulating discussions during this work, and their critical reading of the manuscript. YD was supported by the Plant Genetics Department of INRA and the CETIOM (Centre technique interprofessionnel des oléagineux métropolitains).


  1. Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schagger H (1998) Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO J 17:7170–7178. doi: 10.1093/emboj/17.24.7170 PubMedCrossRefGoogle Scholar
  2. Bonhomme S, Budar F, Lancelin D, Small I, Defrance M-C, Pelletier G (1992) Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Mol Gen Genet 235:340–348. doi: 10.1007/BF00279379 PubMedCrossRefGoogle Scholar
  3. Budar F, Berthomé R (2007) Cytoplasmic male sterilities and mitochondrial gene mutations in land plants. In: Logan DC (ed) Plant mitochondria. Blackwell Publishing, Oxford, pp 278–307CrossRefGoogle Scholar
  4. Budar F, Touzet P, De Paepe R (2003) The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica 117:3–16. doi: 10.1023/A:1022381016145 PubMedCrossRefGoogle Scholar
  5. Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet 23:81–90. doi: 10.1016/j.tig.2006.12.004 PubMedCrossRefGoogle Scholar
  6. Ducos E, Touzet P, Boutry M (2001) The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. Plant J 26:171–180. doi: 10.1046/j.1365-313x.2001.01017.x PubMedCrossRefGoogle Scholar
  7. Dudkina NV, Heinemeyer J, Sunderhaus S, Boekema EJ, Braun HP (2006) Respiratory chain supercomplexes in the plant mitochondrial membrane. Trends Plant Sci 11:232–240. doi: 10.1016/j.tplants.2006.03.007 PubMedCrossRefGoogle Scholar
  8. Duroc Y, Gaillard C, Hiard S, Defrance MC, Pelletier G, Budar F (2005) Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae. Biochimie 87:1089–1100. doi: 10.1016/j.biochi.2005.05.009 PubMedCrossRefGoogle Scholar
  9. Duroc Y, Gaillard C, Hiard S, Tinchant C, Berthomé R, Pelletier G, Budar F (2006) Nuclear expression of a cytoplasmic male sterility gene modifies mitochondrial morphology in yeast and plant cells. Plant Sci 170:755–767. doi: 10.1016/j.plantsci.2005.11.008 CrossRefGoogle Scholar
  10. Eubel H, Jansch L, Braun HP (2003) New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol 133:274–286. doi: 10.1104/pp.103.024620 PubMedCrossRefGoogle Scholar
  11. Eubel H, Heinemeyer J, Sunderhaus S, Braun HP (2004) Respiratory chain supercomplexes in plant mitochondria. Plant Physiol Biochem 42:937–942. doi: 10.1016/j.plaphy.2004.09.010 PubMedCrossRefGoogle Scholar
  12. Eubel H, Braun HP, Millar AH (2005) Blue-native PAGE in plants: a tool in analysis of protein-protein interactions. Plant Methods 1:11. doi: 10.1186/1746-4811-1-11 PubMedCrossRefGoogle Scholar
  13. Giege P, Sweetlove LJ, Leaver CJ (2003) Identification of mitochondrial protein complexes in Arabidopsis using two-dimensional Blue-Native polyacrylamide gel electrophoresis. Plant Mol Biol Rep 21:133–144. doi: 10.1007/BF02774240 CrossRefGoogle Scholar
  14. Gillman JD, Bentolila S, Hanson MR (2007) The petunia restorer of fertility protein is part of a large mitochondrial complex that interacts with transcripts of the CMS-associated locus. Plant J 49:217–227. doi: 10.1111/j.1365-313X.2006.02953.x PubMedCrossRefGoogle Scholar
  15. Gonzalez-Melendi P, Uyttewaal M, Morcillo CN, Hernandez Mora JR, Fajardo S, Budar F, Lucas MM (2008) A light and electron microscopy analysis of the events leading to male sterility in Ogu-INRA CMS of rapeseed (Brassica napus). J Exp Bot 59:827–838. doi: 10.1093/jxb/erm365 PubMedCrossRefGoogle Scholar
  16. Grelon M, Budar F, Bonhomme S, Pelletier G (1994) Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol Gen Genet 243:540–547. doi: 10.1007/BF00284202 PubMedCrossRefGoogle Scholar
  17. Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16(Suppl):S154–S169. doi: 10.1105/tpc.015966 PubMedCrossRefGoogle Scholar
  18. Havey MJ (2004) The use of cytoplasmic male sterility for hybrid seed production. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles. Springer, The Netherlands, pp 623–634CrossRefGoogle Scholar
  19. Heinemeyer J, Lewejohann D, Braun HP (2007) Blue-native gel electrophoresis for the characterization of protein complexes in plants. Methods Mol Biol 355:343–352PubMedGoogle Scholar
  20. Hernould M, Suharsono S, Litvak S, Araya A, Mouras A (1993) Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci USA 90:2370–2374. doi: 10.1073/pnas.90.6.2370 PubMedCrossRefGoogle Scholar
  21. Jansch L, Kruft V, Schmitz UK, Braun HP (1996) New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. Plant J 9:357–368. doi: 10.1046/j.1365-313X.1996.09030357.x PubMedCrossRefGoogle Scholar
  22. Juszczuk IM, Flexas J, Szal B, Dabrowska Z, Ribas-Carbo M, Rychter AM (2007) Effect of mitochondrial genome rearrangement on respiratory activity, photosynthesis, photorespiration and energy status of MSC16 cucumber (Cucumis sativus) mutant. Physiol Plant 131:527–541. doi: 10.1111/j.1399-3054.2007.00984.x PubMedCrossRefGoogle Scholar
  23. Krishnasamy S, Makaroff CA (1993) Characterization of the radish mitochondrial orfB locus: possible relationship with male sterility in Ogura radish. Curr Genet 24:156–163. doi: 10.1007/BF00324680 PubMedCrossRefGoogle Scholar
  24. Kruft V, Eubel H, Jansch L, Werhahn W, Braun HP (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol 127:1694–1710. doi: 10.1104/pp.010474 PubMedCrossRefGoogle Scholar
  25. Levings CSI, Siedow JN (1992) Molecular basis of disease susceptibility in the Texas cytoplasm of maize. Plant Mol Biol 19:135–147. doi: 10.1007/BF00015611 PubMedCrossRefGoogle Scholar
  26. Li S, Tan Y, Wang K, Wan C, Zhu Y (2008) Gametophytically alloplasmic CMS line of rice (Oryza sativa L.) with variant orfH79 haplotype corresponds to specific fertility restorer. Theor Appl Genet 117:1389–1397. doi: 10.1007/s00122-008-0872-6 PubMedCrossRefGoogle Scholar
  27. Matthes A, Schmidt-Gattung S, Kohler D, Forner J, Wildum S, Raabe M, Urlaub H, Binder S (2007) Two DEAD-Box proteins may be part of RNA-dependent high-molecular-mass protein complexes in Arabidopsis mitochondria. Plant Physiol 145:1637–1646. doi: 10.1104/pp.107.108076 PubMedCrossRefGoogle Scholar
  28. Millar AH, Eubel H, Jansch L, Kruft V, Heazlewood JL, Braun HP (2004) Mitochondrial cytochrome c oxidase and succinate dehydrogenase complexes contain plant specific subunits. Plant Mol Biol 56:77–90. doi: 10.1007/s11103-004-2316-2 PubMedCrossRefGoogle Scholar
  29. Packer L, Utsumi R, Mustafa MG (1966) Oscillatory states of mitochondria. 1. Electron and energy transfer pathways. Arch Biochem Biophys 117:381–393. doi: 10.1016/0003-9861(66)90426-7 PubMedCrossRefGoogle Scholar
  30. Pelletier G, Primard C, Vedel F, Chétrit P, Rémy R, Rousselle P, Renard M (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Genet 191:244–250. doi: 10.1007/BF00334821 CrossRefGoogle Scholar
  31. Priault P, Tcherkez G, Cornic G, De Paepe R, Naik R, Ghashghaie J, Streb P (2006) The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion. J Exp Bot 57:3195–3207. doi: 10.1093/jxb/erl083 PubMedCrossRefGoogle Scholar
  32. Rhoades MM (1933) The cytoplasmic inheritance of male sterility in Zea mays. J Genet 27:71–93. doi: 10.1007/BF02984382 CrossRefGoogle Scholar
  33. Rhoads D, Levings Cr, Siedow J (1995) URF13, a ligand-gated, pore-forming receptor for T-toxin in the inner membrane of cms-T mitochondria. J Bioenerg Biomembr 27:437–445. doi: 10.1007/BF02110006 PubMedCrossRefGoogle Scholar
  34. Rohila JS, Chen M, Chen S, Chen J, Cerny R, Dardick C, Canlas P, Xu X, Gribskov M, Kanrar S, Zhu JK, Ronald P, Fromm ME (2006) Protein–protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J 46:1–13. doi: 10.1111/j.1365-313X.2006.02671.x PubMedCrossRefGoogle Scholar
  35. Sabar M, De Paepe R, de Kouchkovsky Y (2000) Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris. Plant Physiol 124:1239–1250. doi: 10.1104/pp.124.3.1239 PubMedCrossRefGoogle Scholar
  36. Sabar M, Gagliardi D, Balk J, Leaver CJ (2003) ORFB is a subunit of F(1)F(O)-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower. EMBO Rep 4:1–6. doi: 10.1038/sj.embor.embor800 CrossRefGoogle Scholar
  37. Sabar M, Balk J, Leaver CJ (2005) Histochemical staining and quantification of plant mitochondrial respiratory chain complexes using blue-native polyacrylamide gel electrophoresis. Plant J 44:893–901. doi: 10.1111/j.1365-313X.2005.02577.x PubMedCrossRefGoogle Scholar
  38. Snedden WA, Fromm H (1997) Characterization of the plant homologue of prohibitin, a gene associated with antiproliferative activity in mammalian cells. Plant Mol Biol 33:753–756. doi: 10.1023/A:1005737026289 PubMedCrossRefGoogle Scholar
  39. Uyttewaal M, Mireau H, Rurek M, Hammani K, Arnal N, Quadrado M, Giege P (2008) PPR336 is associated with polysomes in plant mitochondria. J Mol Biol 375:626–636PubMedCrossRefGoogle Scholar
  40. Valot B, Negroni L, Zivy M, Gianinazzi S, Dumas-Gaudot E (2006) A mass spectrometric approach to identify arbuscular mycorrhiza-related proteins in root plasma membrane fractions. Proteomics 6(Suppl 1):S145–S155. doi: 10.1002/pmic.200500403 PubMedCrossRefGoogle Scholar
  41. Van Der Hoorn RA, Rivas S, Wulff BB, Jones JD, Joosten MH (2003) Rapid migration in gel filtration of the Cf-4 and Cf-9 resistance proteins is an intrinsic property of Cf proteins and not because of their association with high-molecular-weight proteins. Plant J 35:305–315. doi: 10.1046/j.1365-313X.2003.01803.x CrossRefGoogle Scholar
  42. Velten M, Gomez-Vrielynck N, Chaffotte A, Ladjimi MM (2002) Domain structure of the HSC70 cochaperone, HIP. J Biol Chem 277:259–266. doi: 10.1074/jbc.M106881200 PubMedCrossRefGoogle Scholar
  43. Wise RP, Bronson CR, Schnable PS, Horner HT (1999) The genetics, pathology and molecular biology of T-cytoplasm male sterility in maize. Adv Agron 65:79–131. doi: 10.1016/S0065-2113(08)60911-6 CrossRefGoogle Scholar
  44. Zhang H, Li S, Yi P, Wan C, Chen Z, Zhu Y (2007) A Honglian CMS line of rice displays aberrant F(0) of F (0)F (1)-ATPase. Plant Cell Rep 26:1065–1071. doi: 10.1007/s00299-006-0293-4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Yann Duroc
    • 1
    • 2
  • Sophie Hiard
    • 1
  • Nathalie Vrielynck
    • 1
  • Sandrine Ragu
    • 1
    • 3
  • Françoise Budar
    • 1
  1. 1.Station de Génétique et d’Amélioration des PlantesInstitut Jean-Pierre BourginVersailles cedexFrance
  2. 2.UPR2355Centre National de la Recherche ScientifiqueGif-Sur-Yvette CedexFrance
  3. 3.UMR 2027 CNRS/Institut CurieOrsayFrance

Personalised recommendations