Skip to main content
Log in

The Ogura sterility-inducing protein forms a large complex without interfering with the oxidative phosphorylation components in rapeseed mitochondria

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The Ogura cytoplasmic male sterility causing protein, ORF138, was found to be part of a complex with an apparent size of over 750 kDa in the inner membrane of mitochondria of sterile plants. ORF138 did not colocalize with any of the oxidative phosphorylation complexes, nor did its presence modify their apparent size or amount, compared to samples from fertile isogenic plants. We attempted to detect potential proteins or nucleic acids that could be involved in the large ORF138 complex by 2D PAGE, immunoprecipitation and nuclease treatments of native extracts. All our results suggest that the ORF138 protein is the main, if not only, component of this large complex. The capacities of complexes I, II, IV, and ATP synthase were identical in samples from sterile and fertile plants. Isolated mitochondria from sterile plants showed a higher oxygen consumption than those from fertile plants. In vivo respiration measurements suggest that the difference in O2 consumption measured at the organelle level is compensated at the cell/tissue level, completely in leaves, but only partially in male reproductive organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BN-PAGE:

Blue native polyacrylamide gel electrophoresis

CMS:

Cytoplasmic male sterility

CPN60:

Chaperone 60

DDM:

nDodecyl ßD maltoside

LC-MS/MS:

Liquid chromatography tandem mass spectrometry

PHB:

Prohibitin

PMSF:

Phenylmethanesulphonylfluoride

TAP:

Tandem affinity purification

nPG:

n-Propylgallate

References

  • Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schagger H (1998) Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO J 17:7170–7178. doi:10.1093/emboj/17.24.7170

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme S, Budar F, Lancelin D, Small I, Defrance M-C, Pelletier G (1992) Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Mol Gen Genet 235:340–348. doi:10.1007/BF00279379

    Article  PubMed  CAS  Google Scholar 

  • Budar F, Berthomé R (2007) Cytoplasmic male sterilities and mitochondrial gene mutations in land plants. In: Logan DC (ed) Plant mitochondria. Blackwell Publishing, Oxford, pp 278–307

    Chapter  Google Scholar 

  • Budar F, Touzet P, De Paepe R (2003) The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica 117:3–16. doi:10.1023/A:1022381016145

    Article  PubMed  CAS  Google Scholar 

  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet 23:81–90. doi:10.1016/j.tig.2006.12.004

    Article  PubMed  CAS  Google Scholar 

  • Ducos E, Touzet P, Boutry M (2001) The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. Plant J 26:171–180. doi:10.1046/j.1365-313x.2001.01017.x

    Article  PubMed  CAS  Google Scholar 

  • Dudkina NV, Heinemeyer J, Sunderhaus S, Boekema EJ, Braun HP (2006) Respiratory chain supercomplexes in the plant mitochondrial membrane. Trends Plant Sci 11:232–240. doi:10.1016/j.tplants.2006.03.007

    Article  PubMed  CAS  Google Scholar 

  • Duroc Y, Gaillard C, Hiard S, Defrance MC, Pelletier G, Budar F (2005) Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae. Biochimie 87:1089–1100. doi:10.1016/j.biochi.2005.05.009

    Article  PubMed  CAS  Google Scholar 

  • Duroc Y, Gaillard C, Hiard S, Tinchant C, Berthomé R, Pelletier G, Budar F (2006) Nuclear expression of a cytoplasmic male sterility gene modifies mitochondrial morphology in yeast and plant cells. Plant Sci 170:755–767. doi:10.1016/j.plantsci.2005.11.008

    Article  CAS  Google Scholar 

  • Eubel H, Jansch L, Braun HP (2003) New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol 133:274–286. doi:10.1104/pp.103.024620

    Article  PubMed  CAS  Google Scholar 

  • Eubel H, Heinemeyer J, Sunderhaus S, Braun HP (2004) Respiratory chain supercomplexes in plant mitochondria. Plant Physiol Biochem 42:937–942. doi:10.1016/j.plaphy.2004.09.010

    Article  PubMed  CAS  Google Scholar 

  • Eubel H, Braun HP, Millar AH (2005) Blue-native PAGE in plants: a tool in analysis of protein-protein interactions. Plant Methods 1:11. doi:10.1186/1746-4811-1-11

    Article  PubMed  Google Scholar 

  • Giege P, Sweetlove LJ, Leaver CJ (2003) Identification of mitochondrial protein complexes in Arabidopsis using two-dimensional Blue-Native polyacrylamide gel electrophoresis. Plant Mol Biol Rep 21:133–144. doi:10.1007/BF02774240

    Article  CAS  Google Scholar 

  • Gillman JD, Bentolila S, Hanson MR (2007) The petunia restorer of fertility protein is part of a large mitochondrial complex that interacts with transcripts of the CMS-associated locus. Plant J 49:217–227. doi:10.1111/j.1365-313X.2006.02953.x

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Melendi P, Uyttewaal M, Morcillo CN, Hernandez Mora JR, Fajardo S, Budar F, Lucas MM (2008) A light and electron microscopy analysis of the events leading to male sterility in Ogu-INRA CMS of rapeseed (Brassica napus). J Exp Bot 59:827–838. doi:10.1093/jxb/erm365

    Article  PubMed  CAS  Google Scholar 

  • Grelon M, Budar F, Bonhomme S, Pelletier G (1994) Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol Gen Genet 243:540–547. doi:10.1007/BF00284202

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16(Suppl):S154–S169. doi:10.1105/tpc.015966

    Article  PubMed  CAS  Google Scholar 

  • Havey MJ (2004) The use of cytoplasmic male sterility for hybrid seed production. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles. Springer, The Netherlands, pp 623–634

    Chapter  Google Scholar 

  • Heinemeyer J, Lewejohann D, Braun HP (2007) Blue-native gel electrophoresis for the characterization of protein complexes in plants. Methods Mol Biol 355:343–352

    PubMed  CAS  Google Scholar 

  • Hernould M, Suharsono S, Litvak S, Araya A, Mouras A (1993) Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci USA 90:2370–2374. doi:10.1073/pnas.90.6.2370

    Article  PubMed  CAS  Google Scholar 

  • Jansch L, Kruft V, Schmitz UK, Braun HP (1996) New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. Plant J 9:357–368. doi:10.1046/j.1365-313X.1996.09030357.x

    Article  PubMed  CAS  Google Scholar 

  • Juszczuk IM, Flexas J, Szal B, Dabrowska Z, Ribas-Carbo M, Rychter AM (2007) Effect of mitochondrial genome rearrangement on respiratory activity, photosynthesis, photorespiration and energy status of MSC16 cucumber (Cucumis sativus) mutant. Physiol Plant 131:527–541. doi:10.1111/j.1399-3054.2007.00984.x

    Article  PubMed  CAS  Google Scholar 

  • Krishnasamy S, Makaroff CA (1993) Characterization of the radish mitochondrial orfB locus: possible relationship with male sterility in Ogura radish. Curr Genet 24:156–163. doi:10.1007/BF00324680

    Article  PubMed  CAS  Google Scholar 

  • Kruft V, Eubel H, Jansch L, Werhahn W, Braun HP (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol 127:1694–1710. doi:10.1104/pp.010474

    Article  PubMed  CAS  Google Scholar 

  • Levings CSI, Siedow JN (1992) Molecular basis of disease susceptibility in the Texas cytoplasm of maize. Plant Mol Biol 19:135–147. doi:10.1007/BF00015611

    Article  PubMed  CAS  Google Scholar 

  • Li S, Tan Y, Wang K, Wan C, Zhu Y (2008) Gametophytically alloplasmic CMS line of rice (Oryza sativa L.) with variant orfH79 haplotype corresponds to specific fertility restorer. Theor Appl Genet 117:1389–1397. doi:10.1007/s00122-008-0872-6

    Article  PubMed  CAS  Google Scholar 

  • Matthes A, Schmidt-Gattung S, Kohler D, Forner J, Wildum S, Raabe M, Urlaub H, Binder S (2007) Two DEAD-Box proteins may be part of RNA-dependent high-molecular-mass protein complexes in Arabidopsis mitochondria. Plant Physiol 145:1637–1646. doi:10.1104/pp.107.108076

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Eubel H, Jansch L, Kruft V, Heazlewood JL, Braun HP (2004) Mitochondrial cytochrome c oxidase and succinate dehydrogenase complexes contain plant specific subunits. Plant Mol Biol 56:77–90. doi:10.1007/s11103-004-2316-2

    Article  PubMed  CAS  Google Scholar 

  • Packer L, Utsumi R, Mustafa MG (1966) Oscillatory states of mitochondria. 1. Electron and energy transfer pathways. Arch Biochem Biophys 117:381–393. doi:10.1016/0003-9861(66)90426-7

    Article  PubMed  CAS  Google Scholar 

  • Pelletier G, Primard C, Vedel F, Chétrit P, Rémy R, Rousselle P, Renard M (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Genet 191:244–250. doi:10.1007/BF00334821

    Article  CAS  Google Scholar 

  • Priault P, Tcherkez G, Cornic G, De Paepe R, Naik R, Ghashghaie J, Streb P (2006) The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion. J Exp Bot 57:3195–3207. doi:10.1093/jxb/erl083

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MM (1933) The cytoplasmic inheritance of male sterility in Zea mays. J Genet 27:71–93. doi:10.1007/BF02984382

    Article  Google Scholar 

  • Rhoads D, Levings Cr, Siedow J (1995) URF13, a ligand-gated, pore-forming receptor for T-toxin in the inner membrane of cms-T mitochondria. J Bioenerg Biomembr 27:437–445. doi:10.1007/BF02110006

    Article  PubMed  CAS  Google Scholar 

  • Rohila JS, Chen M, Chen S, Chen J, Cerny R, Dardick C, Canlas P, Xu X, Gribskov M, Kanrar S, Zhu JK, Ronald P, Fromm ME (2006) Protein–protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J 46:1–13. doi:10.1111/j.1365-313X.2006.02671.x

    Article  PubMed  CAS  Google Scholar 

  • Sabar M, De Paepe R, de Kouchkovsky Y (2000) Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris. Plant Physiol 124:1239–1250. doi:10.1104/pp.124.3.1239

    Article  PubMed  CAS  Google Scholar 

  • Sabar M, Gagliardi D, Balk J, Leaver CJ (2003) ORFB is a subunit of F(1)F(O)-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower. EMBO Rep 4:1–6. doi:10.1038/sj.embor.embor800

    Article  Google Scholar 

  • Sabar M, Balk J, Leaver CJ (2005) Histochemical staining and quantification of plant mitochondrial respiratory chain complexes using blue-native polyacrylamide gel electrophoresis. Plant J 44:893–901. doi:10.1111/j.1365-313X.2005.02577.x

    Article  PubMed  CAS  Google Scholar 

  • Snedden WA, Fromm H (1997) Characterization of the plant homologue of prohibitin, a gene associated with antiproliferative activity in mammalian cells. Plant Mol Biol 33:753–756. doi:10.1023/A:1005737026289

    Article  PubMed  CAS  Google Scholar 

  • Uyttewaal M, Mireau H, Rurek M, Hammani K, Arnal N, Quadrado M, Giege P (2008) PPR336 is associated with polysomes in plant mitochondria. J Mol Biol 375:626–636

    Article  PubMed  CAS  Google Scholar 

  • Valot B, Negroni L, Zivy M, Gianinazzi S, Dumas-Gaudot E (2006) A mass spectrometric approach to identify arbuscular mycorrhiza-related proteins in root plasma membrane fractions. Proteomics 6(Suppl 1):S145–S155. doi:10.1002/pmic.200500403

    Article  PubMed  Google Scholar 

  • Van Der Hoorn RA, Rivas S, Wulff BB, Jones JD, Joosten MH (2003) Rapid migration in gel filtration of the Cf-4 and Cf-9 resistance proteins is an intrinsic property of Cf proteins and not because of their association with high-molecular-weight proteins. Plant J 35:305–315. doi:10.1046/j.1365-313X.2003.01803.x

    Article  Google Scholar 

  • Velten M, Gomez-Vrielynck N, Chaffotte A, Ladjimi MM (2002) Domain structure of the HSC70 cochaperone, HIP. J Biol Chem 277:259–266. doi:10.1074/jbc.M106881200

    Article  PubMed  CAS  Google Scholar 

  • Wise RP, Bronson CR, Schnable PS, Horner HT (1999) The genetics, pathology and molecular biology of T-cytoplasm male sterility in maize. Adv Agron 65:79–131. doi:10.1016/S0065-2113(08)60911-6

    Article  CAS  Google Scholar 

  • Zhang H, Li S, Yi P, Wan C, Chen Z, Zhu Y (2007) A Honglian CMS line of rice displays aberrant F(0) of F (0)F (1)-ATPase. Plant Cell Rep 26:1065–1071. doi:10.1007/s00299-006-0293-4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank A. Martin-Canadell for growing the many plants that provided excellent starting material for the production of mitochondrial extracts. We are grateful to G. Bonnard and H. Fromm for the generous gift of antibodies against CPN60 and PHB, respectively. We thank B. Valot and L. Negroni, from the proteomics platform at the IFR87, for their help with the LC-MS/MS analyses. We are very grateful to G. Tcherkez and P. Gauthier, from the metabolomic platform at IFR87, for allowing us to use the Licor device and for their advice and help with gas exchange measurements. We thank M. Gonneau and H. Mireau for helpful and stimulating discussions during this work, and their critical reading of the manuscript. YD was supported by the Plant Genetics Department of INRA and the CETIOM (Centre technique interprofessionnel des oléagineux métropolitains).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Budar.

Additional information

S. Hiard and N. Vrielynck contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duroc, Y., Hiard, S., Vrielynck, N. et al. The Ogura sterility-inducing protein forms a large complex without interfering with the oxidative phosphorylation components in rapeseed mitochondria. Plant Mol Biol 70, 123–137 (2009). https://doi.org/10.1007/s11103-009-9461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9461-6

Keywords

Navigation