Advertisement

Plant Molecular Biology

, 69:649 | Cite as

Expressional profiling study revealed unique expressional patterns and dramatic expressional divergence of maize α-zein super gene family

  • Lingna Feng
  • Jia Zhu
  • Gang Wang
  • Yuanping Tang
  • Hanjun Chen
  • Weibo Jin
  • Fei Wang
  • Bing Mei
  • Zhengkai Xu
  • Rentao Song
Article

Abstract

The α-zein super gene family encodes the most predominant storage protein in maize (Zea mays) endosperm. In maize inbred line B73, it consists of four gene families with 41 member genes. In this study, we combined quantitative real-time PCR and random clone sequencing to successfully profile the expression of α-zein super gene family during endosperm development. We found that only 18 of the 41 member genes were expressed, and their expression levels diverge greatly. At the gene family level, all families had characteristic “up-and-down” oscillating expressional patterns that diverged into two major groups. At the individual gene level, member genes showed dramatic divergence of expression patterns, indicating fast differentiation of their expression regulation. A comparison study among different inbred lines revealed significantly different expressed gene sets, indicating the existence of highly diverged haplotypes. Large gene families containing long gene clusters, e.g. z1A or z1C, mainly contributed the highly divergent haplotypes. In addition, allelic genes also showed significant divergence in their expressional levels. These results indicated a highly dynamic and fast evolving nature to the maize α-zein super gene family, which might be a common feature for other large gene families.

Keywords

Zea mays α-zein Expression profile Super gene family Endosperm development 

Abbreviations

DAP

Days after pollination

O2

Opaque2, transcriptional factor for z1C gene family

Notes

Acknowledgments

We would like to thank Dr. Eric Linton for critical reading of the manuscript, Xiang-zong Meng, Jian-ping Xu for their help with the plant materials, Liang-liang Zhou, Bing-bing Huang for their help with DNA sequencing analysis. This work was supported by NSFC (30671303), Ministry of Science and Technology of China (2006AA10Z148, 2006AA10A107), Ministry of Education of China (NCET-06-0435, 206048), Fok Ying Tung Education Foundation (101024), Shanghai Education Foundation (04SG40), Education Commission, Science and Technology Commission of Shanghai Municipality (05ZZ02, 05QMX1424).

Supplementary material

11103_2008_9444_MOESM1_ESM.doc (41 kb)
Supplementary material 1 (DOC 41 kb)

References

  1. Burr B, Burr FA, John TP, Thomas M, Davis RW (1982) Zein storage protein gene family of maize. An assessment of heterogeneity with cloned messenger RNA sequences. J Mol Biol 154:33–49. doi: 10.1016/0022-2836(82)90415-6 PubMedCrossRefGoogle Scholar
  2. Chervitz SA, Aravind L, Sherlock G, Ball CA, Koonin EV, Dwight SS, Harris MA, Dolinski K, Mohr S, Smith T et al (1998) Comparison of the complete protein sets of worm and yeast: orthology and divergence. Science 282:2022–2028. doi: 10.1126/science.282.5396.2022 PubMedCrossRefGoogle Scholar
  3. Ciceri P, Gianazza E, Lazzari B, Lippoli G, Genga A, Hoscheck G, Schmidt RJ, Viotti A (1997) Phosphorylation of Opaque2 changes diurnally and impacts its DNA binding activity. Plant Cell 9:97–108PubMedCrossRefGoogle Scholar
  4. Ciceri P, Locatelli F, Genga A, Viotti A, Schmidt RJ (1999) The activity of the maize Opaque2 transcriptional activator is regulated diurnally. Plant Physiol 121:1321–1328. doi: 10.1104/pp.121.4.1321 PubMedCrossRefGoogle Scholar
  5. Ciceri P, Castelli S, Lauria M, Lazzari B, Genga A, Bernard L, Sturaro M, Viotti A (2000) Specific combinations of zein genes and genetic backgrounds influence the transcription of the heavy-chain zein genes in maize opaque-2 endosperms. Plant Physiol 124:451–460. doi: 10.1104/pp.124.1.451 PubMedCrossRefGoogle Scholar
  6. Coleman CE, Larkins BA (1998) The prolamins of maize. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer, Dordrecht, pp 109–139Google Scholar
  7. Dolfini SF, Landoni M, Tonelli C, Bemard L, Viotti A (1992) Spatial regulation in the expression of structural and regulatory storage protein genes in Zea mays endosperm. Dev Genet 13:264–276. doi: 10.1002/dvg.1020130404 CrossRefGoogle Scholar
  8. Esen A (1987) Proposed nomenclature for the alcohol-soluble proteins (zeins) of maize (Zea mays L.). J Cereal Sci 5:117–128CrossRefGoogle Scholar
  9. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  10. Hagen G, Rubenstein I (1981) Complex organization of zein genes in maize. Gene 13:239–249. doi: 10.1016/0378-1119(81)90029-9 PubMedCrossRefGoogle Scholar
  11. Hamaker BR, Mohamed AA, Habben JE, Huang CP, Larkins BA (1995) Efficient procedure for extracting maize and sorghum kernel proteins reveals higher rolamin contents than the conventional method. Cereal Chem 72:583–588Google Scholar
  12. Heidecker G, Messing J (1986) Structural analysis of plant genes. Annu Rev Plant Physiol 37:439–446. doi: 10.1146/annurev.pp.37.060186.002255 CrossRefGoogle Scholar
  13. Kiesselbach TA (1949) The structure and reproduction of corn. University of Nebraska College of Agriculture. Agric Exp Stn Res Bull 161:1–96Google Scholar
  14. Kodrzycki R, Boston RS, Larkins BA (1989) The opaque-2 mutation of maize differentially reduces zein gene transcription. Plant Cell 1:105–114PubMedCrossRefGoogle Scholar
  15. Koonin EV, Tatusov RL, Galperin MY (1998) Beyond complete genomes: from sequence to structure and function. Curr Opin Struct Biol 8:355–363. doi: 10.1016/S0959-440X(98)80070-5 PubMedCrossRefGoogle Scholar
  16. Landry J, Moureaux T (1970) Heterogeneity of corn seed glutelin: selective extraction and amino acid composition of the 3 isolated fractions. Bull Soc Chim Biol (Paris) 52:1021–1037Google Scholar
  17. Landry J, Delhaye S, Damerval C (2000) Improved method for isolating and quantitating α-amino nitrogen as nonprotein, true protein, salt-soluble proteins, zeins, and true glutelins in maize endosperm. Cereal Chem 77:620–626. doi: 10.1094/CCHEM.2000.77.5.620 CrossRefGoogle Scholar
  18. Liu CN, Rubenstein I (1993) Transcriptional characterization of an alpha-zein gene cluster in maize. Plant Mol Biol 22:323–336. doi: 10.1007/BF00014939 PubMedCrossRefGoogle Scholar
  19. Llaca V, Messing J (1998) Amplicons of maize zein genes are conserved within genic but expanded and constricted in intergenic regions. Plant J 15:211–220. doi: 10.1046/j.1365-313X.1998.00200.x PubMedCrossRefGoogle Scholar
  20. Marks MD, Lindell JS, Larkins BA (1985) Quantitative analysis of the accumulation of Zein mRNA during maize endosperm development. J Biol Chem 260:16445–16450PubMedGoogle Scholar
  21. Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Soderlund CA, Mayer KF et al (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354. doi: 10.1073/pnas.0406163101 PubMedCrossRefGoogle Scholar
  22. Muller M, Dues G, Balconi C, Salamini F, Thompson RD (1997) Nitrogen and hormonal responsiveness of the 22 kD alpha-zein and b-32 genes in maize endosperm is displayed in the absence of the transcriptional regulator Opaque-2. Plant J 12:281–291. doi: 10.1046/j.1365-313X.1997.12020281.x PubMedCrossRefGoogle Scholar
  23. Nei M, Hughes A (1992) Balanced polymorphism and evolution by the birth-and-death process in the MHC loci. In: Tsuji K, Aizawa M, Sasazuki T (eds) 11th Histocompatibility workshop and conference. Oxford University Press, Oxford, pp 27–38Google Scholar
  24. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152. doi: 10.1146/annurev.genet.39.073003.112240 PubMedCrossRefGoogle Scholar
  25. Pedersen K, Devereux J, Wilson DR, Sheldon E, Larkins BA (1982) Cloning and sequence analysis reveal structural variation among related zein genes in maize. Cell 29:1015–1026. doi: 10.1016/0092-8674(82)90465-2 PubMedCrossRefGoogle Scholar
  26. Rubenstein I, Geraghty DE (1986) Genetic organization of zeins. In: Pomeranz Y (ed) Advances in cereal science an technology, vol VIII. American Association of Cereal Chemists Press, St. Paul, pp 297–315Google Scholar
  27. Schmidt RJ, Burr FA, Burr B (1987) Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science 238:960–963. doi: 10.1126/science.2823388 PubMedCrossRefGoogle Scholar
  28. Semple C, Wolfe KH (1999) Gene duplication and gene conversion in the Caenorhabditis elegans genome. J Mol Evol 48:555–564. doi: 10.1007/PL00006498 PubMedCrossRefGoogle Scholar
  29. Soave C, Tardani L, Di Fonzo N, Salamini F (1981) Zein level in maize endosperm depends on a protein under control of the opaque-2 and opaque-6 loci. Cell 27:403–410. doi: 10.1016/0092-8674(81)90423-2 PubMedCrossRefGoogle Scholar
  30. Song R, Messing J (2002) Contiguous genomic DNA sequence comprising the 19-kD zein gene family from maize. Plant Physiol 130:1626–1635. doi: 10.1104/pp.012179 PubMedCrossRefGoogle Scholar
  31. Song R, Messing J (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci USA 100:9055–9060. doi: 10.1073/pnas.1032999100 PubMedCrossRefGoogle Scholar
  32. Song R, Llaca V, Linton E, Messing J (2001) Sequence, regulation, and evolution of the maize 22-kD alpha zein gene family. Genome Res 11:1817–1825PubMedGoogle Scholar
  33. Song R, Ward K, Messing J (2003) Maize alpha zein genes map to seven positions in the maize genome. Maize Genet Coop News Lett 77:59–60Google Scholar
  34. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815. doi: 10.1038/35048692 CrossRefGoogle Scholar
  35. Ueda T, Messing J (1993) Manipulation of amino acid balance in maize seeds. Genet Eng (N Y) 15:109–130Google Scholar
  36. Van Hoof A, Green P (1996) Premature nonsense codons decrease the stability of phytohemagglutinin mRNA in a position-dependent manner. Plant J 10:415–424. doi: 10.1046/j.1365-313x.1996.10030415.x PubMedCrossRefGoogle Scholar
  37. Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA 94:7685–7690. doi: 10.1073/pnas.94.14.7685 PubMedCrossRefGoogle Scholar
  38. Wang Y, Zhu W, Levy DE (2006) Nuclear and cytoplasmic mRNA quantification by SYBR green based real-time RT-PCR. Methods 39:356–362. doi: 10.1016/j.ymeth.2006.06.010 PubMedCrossRefGoogle Scholar
  39. Wienand U, Langridge PL, Feix G (1981) Isolation and characterization of a genomic sequence of maize coding for a zein gene. Mol Gen Genet 182:440–444. doi: 10.1007/BF00293933 CrossRefGoogle Scholar
  40. Wilson CM (1983) Seed protein fractions of maize, sorghum and related cereals. In: Gottschalk W, Muller HP (eds) Seed proteins: biochemistry, genetics, nutritive value. Martinus Nijhoof/Dr. W. Junk Publishers, The Hague, pp 271–307Google Scholar
  41. Wilson DR, Larkins BA (1984) Zein gene organization in maize and related grasses. J Mol Evol 20:330–340. doi: 10.1007/BF02104739 PubMedCrossRefGoogle Scholar
  42. Woo YM, Hu DW, Larkins BA, Jung R (2001) Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. Plant Cell 13:2297–2317PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Lingna Feng
    • 1
  • Jia Zhu
    • 1
  • Gang Wang
    • 1
  • Yuanping Tang
    • 1
  • Hanjun Chen
    • 1
  • Weibo Jin
    • 1
  • Fei Wang
    • 1
  • Bing Mei
    • 1
  • Zhengkai Xu
    • 1
  • Rentao Song
    • 1
  1. 1.Shanghai Key Laboratory of Bio-energy Crop, School of Life SciencesShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations