Skip to main content

Advertisement

Log in

A PIP-family protein is required for biosynthesis of tobacco alkaloids

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plants in the Nicotiana genus produce nicotine and related pyridine alkaloids as a part of their chemical defense against insect herbivores. These alkaloids are formed by condensation of a derivative of nicotinic acid, but the enzyme(s) involved in the final condensation step remains elusive. In Nicotiana tabacum, an orphan reductase A622 and its close homolog A622L are coordinately expressed in the root, upregulated by methyl jasmonate treatment, and controlled by the NIC regulatory loci specific to the biosynthesis of tobacco alkaloids. Conditional suppression of A622 and A622L by RNA interference inhibited cell growth, severely decreased the formation of all tobacco alkaloids, and concomitantly induced an accumulation of nicotinic acid β-N-glucoside, a probable detoxification metabolite of nicotinic acid, in both hairy roots and methyl jasmonate-elicited cultured cells of tobacco. N-methylpyrrolinium cation, a precursor of the pyrrolidine moiety of nicotine, also accumulated in the A622(L)-knockdown hairy roots. We propose that the tobacco A622-like reductases of the PIP family are involved in either the formation of a nicotinic acid-derived precursor or the final condensation reaction of tobacco alkaloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akashi T, Koshimizu S, Aoki T, Ayabe S (2006) Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett 580:5666–5670. doi:10.1016/j.febslet.2006.09.016

    Article  CAS  PubMed  Google Scholar 

  • An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79:568–570

    Article  PubMed  Google Scholar 

  • Cane KA, Mayer M, Lidgett AJ, Michael AJ, Hamill JD (2005) Molecular analysis of alkaloid metabolism in AABB v. aabb genotype Nicotiana tabacum in response to wounding of aerial tissues and methyl jasmonate treatment of cultured roots. Funct Plant Biol 32:305–320. doi:10.1071/FP04008

    Article  CAS  Google Scholar 

  • Chu A, Dikova A, Davin LB, Bedgar DL, Lewis NG (1993) Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases from Forsythia intermedia. J Biol Chem 268:27026–27033

    CAS  PubMed  Google Scholar 

  • Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252. doi:10.1111/j.1469-8137.2005.01480.x

    Article  CAS  PubMed  Google Scholar 

  • Dawson RF, Christman DR, D’Adamo A, Solt ML, Wolf AP (1960) The biosynthesis of nicotine from isotopically labeled nicotinic acids. J Am Chem Soc 82:2628–2633. doi:10.1021/ja01495a059

    Article  CAS  Google Scholar 

  • Gang DR, Kasahara H, Xia Z-Q, van Mijnsbrugge K, Bauw G, Boerjan W, Van Montagu M, Davin LB, Lewis NG (1999) Evolution of plant defense mechanisms: relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. J Biol Chem 274:7516–7527. doi:10.1074/jbc.274.11.7516

    Article  CAS  PubMed  Google Scholar 

  • Goossens A, Haekkinen ST, Laakso I, Seppaenen-Laakso T, Biondi S, Sutter VD, Lammertyn F, Nuutila AM, Soederlund H, Zabeau M, Inze D, Oksman-Caldentey K-M (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600. doi:10.1073/pnas.1032967100

    Article  CAS  PubMed  Google Scholar 

  • Häkkinen ST, Rischer H, Laakso I, Maaheimo H, Seppänen-Laakso T, Oksman-Caldentey KM (2004) Anatalline and other methyl jasmonate-inducible nicotine alkaloids from Nicotiana tabacum cv. BY-2 cell cultures. Planta Med 70:936–941. doi:10.1055/s-2004-832620

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Mitani A, Yamada Y (1990) Diamine oxidase from cultured roots of Hyoscyamus niger. Its function in tropane alkaloid biosynthesis. Plant Physiol 93:16–221

    Article  Google Scholar 

  • Heim WG, Sykes KA, Hildreth SB, Sun J, Lu RH, Jelesko JG (2007) Cloning and characterization of a Nicotiana tabacum methylputrescine oxidase transcript. Phytochemistry 68:454–463. doi:10.1016/j.phytochem.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  • Hibi N, Higashiguchi S, Hashimoto T, Yamada Y (1994) Gene expression in tobacco low-nicotine mutants. Plant Cell 6:723–735

    Article  CAS  PubMed  Google Scholar 

  • Kanegae T, Kajiya H, Amano Y, Hashimoto T, Yamada Y (1994) Species-dependent expression of the hyoscyamine 6β-hydroxylase gene in the pericycle. Plant Physiol 105:483–490. doi:10.1104/pp.105.2.483

    Article  CAS  PubMed  Google Scholar 

  • Katoh A, Ohki H, Inai K, Hashimoto T (2005) Molecular regulation of nicotine biosynthesis. Plant Biotechnol 22:389–392

    CAS  Google Scholar 

  • Katoh A, Shoji T, Hashimoto T (2007) Molecular cloning of N-methylputrescine oxidase from tobacco. Plant Cell Physiol 48:550–554. doi:10.1093/pcp/pcm018

    Article  CAS  PubMed  Google Scholar 

  • Koeduka T, Louie GV, Orlova I, Kish CM, Ibdah M, Wilkerson CG, Bowman ME, Baiga TJ, Noel JP, Dudareva N, Pichersky E (2008) The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages. Plant J 54:362–374. doi:10.1111/j.1365-313X.2008.03412.x

    Article  CAS  PubMed  Google Scholar 

  • Louie GV, Baiga TJ, Bowman ME, Koeduka T, Taylor JH, Spassova SM, Pichersky E, Noel JP (2007) Structure and reaction mechanism of basil eugenol synthase. PLoS One 2:e993. doi:10.1371/journal.pone.0000993

    Article  PubMed  CAS  Google Scholar 

  • Min T, Kasahara H, Bedgar DL, Youn B, Lawrence PK, Gang DR, Halls SC, Park H, Hilsenbeck JL, Davin LB, Lewis NG, Kang C (2003) Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J Biol Chem 278:50714–50723. doi:10.1074/jbc.M308493200

    Article  CAS  PubMed  Google Scholar 

  • Mizusaki S, Kisaki T, Tamaki E (1968) Phytochemical studies on the tobacco alkaloids. XII. Identification of γ-methylaminobutyraldehyde and its precursor role in nicotine biosynthesis. Plant Physiol 43:93–98

    Article  CAS  PubMed  Google Scholar 

  • Mizusaki S, Tanabe Y, Kisaki T, Tamaki E (1970) Metabolism of nicotinic acid in tobacco plants. Phytochemistry 9:549–554. doi:10.1016/S0031-9422(00)85688-5

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nishitani H, Yamada Y, Ohshima N, Okumura K, Taguchi H (1995) Identification of N-(beta-D-glucopyranosyl)nicotinic acid as a major metabolite from niacin in cultured tobacco cells. Biosci Biotechnol Biochem 59:1336–1338

    Article  CAS  Google Scholar 

  • Okamuro JK, Goldberg RB (1985) Tobacco single-copy DNA is highly homologous to sequences present in the genomes of its diploid progenitors. Mol Gen Genet 198:290–298. doi:10.1007/BF00383009

    Article  CAS  Google Scholar 

  • Reed DG, Jelesko JG (2004) The A and B loci of Nicotiana tabacum have non-equivalent effects on the mRNA levels of four alkaloid biosynthetic genes. Plant Sci 167:1123–1130. doi:10.1016/j.plantsci.2004.06.006

    Article  CAS  Google Scholar 

  • Saito K, Hirai MY, Yonekura-Sakakibara K (2008) Decoding genes with coexpression networks and metabolomics—‘majority report by precogs’. Trends Plant Sci 13:36–43. doi:10.1016/j.tplants.2007.10.006

    Article  CAS  PubMed  Google Scholar 

  • Schlieper D, Tiemann K, Barz W (1990) Stereospecificity of hydrogen transfer by fungal and plant NADPH: isoflavone oxidoreductases. Phytochemistry 29:1519–1524. doi:10.1016/0031-9422(90)80112-T

    Article  CAS  Google Scholar 

  • Shoji T, Hashimoto T (2008) Why does anatabine, but not nicotine, accumulate in jasmonate-elicited cultured tobacco BY-2 cells? Plant Cell Physiol 49:1209–1216. doi:10.1093/pcp/pcn096

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Nakajima K, Hashimoto T (2000a) Ethylene suppresses jasmonate-induced gene expression in nicotine biosynthesis. Plant Cell Physiol 41:1072–1076. doi:10.1093/pcp/pcd027

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Yamada Y, Hashimoto T (2000b) Jasmonate induction of putrescine N-methyltransferase genes in the roots of Nicotiana sylvestris. Plant Cell Physiol 41:831–839. doi:10.1093/pcp/pcd001

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Winz R, Iwase T, Nakajima K, Yamada Y, Hashimoto T (2002) Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco. Plant Mol Biol 50:427–440. doi:10.1023/A:1019867732278

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Ogawa T, Hashimoto T (2008) Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes. Plant Cell Physiol 49:1003–1012. doi:10.1093/pcp/pcn077

    Article  CAS  PubMed  Google Scholar 

  • Skalická K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A (2005) Preferential elimination of repeated DNA sequences from the parental, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol 166:291–303. doi:10.1111/j.1469-8137.2004.01297.x

    Article  PubMed  CAS  Google Scholar 

  • Wang X, He X, Lin J, Shao H, Chang Z, Dixon RA (2006) Crystal structure of isoflavon reductase from alfalfa (Medicago sativa L.). J Mol Biol 385:1341–1352. doi:10.1016/j.jmb.2006.03.022

    Article  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590. doi:10.1046/j.1365-313X.2001.01105.x

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Niu Q-W, Chua N-H (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273. doi:10.1046/j.1365-313x.2000.00868.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Chojiro Kojima for molecular modeling of A622, Kirsi-Marja Oksman-Caldentey for providing anatalline, and Junko Tsukamoto for MS analysis. This study was supported in part by the Global COE Program (Frontier Biosciences: strategies for survival and adaptation in a changing global environment), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Hashimoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PPT 212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajikawa, M., Hirai, N. & Hashimoto, T. A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Mol Biol 69, 287–298 (2009). https://doi.org/10.1007/s11103-008-9424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9424-3

Keywords

Navigation