Skip to main content
Log in

Functional conservation of wheat orthologs of maize rough sheath1 and rough sheath2 genes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Maize rough sheath2 (RS2) and Arabidopsis ASYMMETRIC LEAVES1 (AS1) both encode a Myb transcription factor and repress Knotted1-type homeobox (KNOX) genes. The RS2/AS1-KNOX relationship is functionally conserved between maize and Arabidopsis. Here, we cloned wheat orthologs of RS2/AS1 and of a maize rough sheath1 (rs1) KNOX gene and named them WRS2 and WRS1, respectively. WRS1 mRNA was detected at leaf insertion points of the vegetative shoot meristem but was missing in differentiating floral organs. Conversely, WRS2 transcripts accumulated in initiating and developing floral organs. Transgenic tobacco plants expressing WRS1 showed morphological alterations typically observed due to expression of other KNOX genes. WRS2 with a deletion of the Myb domain could interact with NtPHAN to form a heterodimer, and expression of the truncated WRS2 gene conferred a dominant-negative phenotype similar to that expected and induced ectopic expression of an endogenous KNOX gene. Moreover, WRS2 expression alleviated morphological alterations in tobacco plants expressing the wheat KNOX gene. Therefore, the WRS2 gene product represses KNOX expression. These results indicate that the WRS2KNOX relationship plays a fundamentally important role in lateral organ initiation and differentiation of meristems in wheat development. The antagonistic relationship between WRS2 and KNOX around meristematic tissues has been functionally conserved during wheat evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barton MK, Poethig RS (1993) Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119:823–831

    Google Scholar 

  • Baulcombe DC, Saunders GR, Bevan MW, Mayo MA, Harrison BD (1986) Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321:446–449. doi:10.1038/321446a0

    Article  CAS  Google Scholar 

  • Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR (2002) Homologies in leaf form inferred from KNOX1 gene expression during development. Science 296:1858–1860. doi:10.1126/science.1070343

    Article  CAS  PubMed  Google Scholar 

  • Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen R (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971. doi:10.1038/35050091

    Article  CAS  PubMed  Google Scholar 

  • Chen J-J, Janssen B-J, Williams A, Sinha N (1997) A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution. Plant Cell 9:1289–1304

    Article  CAS  PubMed  Google Scholar 

  • Chuck G, Lincoln C, Hake S (1996) KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8:1277–1289

    Article  CAS  PubMed  Google Scholar 

  • Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  • Janssen B-J, Lund L, Sinha N (1998) Overexpression of a homeobox gene, LeT6, reveals indeterminate features in the tomato compound leaf. Plant Physiol 117:771–786. doi:10.1104/pp.117.3.771

    Article  CAS  PubMed  Google Scholar 

  • Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997) Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124:3045–3054

    CAS  PubMed  Google Scholar 

  • Kim M, McCormick S, Timmermans M, Sinha N (2003a) The expression domain of PHANTASTICA determines leaflet placement in compound leaves. Nature 424:438–443. doi:10.1038/nature01820

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Pham T, Hamidi A, McCormick S, Kuzoff RK, Sinha N (2003b) Reduced leaf complexity in tomato wiry mutants suggests a role for PHAN and KNOX genes in generating compound leaves. Development 130:4405–4415. doi:10.1242/dev.00655

    Article  CAS  PubMed  Google Scholar 

  • Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6:1859–1876

    Article  CAS  PubMed  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  CAS  PubMed  Google Scholar 

  • McHale NA, Koning RE (2004) PHANTASTICA regulates development of the adaxial mesophyll in Nicotiana leaves. Plant Cell 16:1251–1262. doi:10.1105/tpc.019307

    Article  CAS  PubMed  Google Scholar 

  • Morimoto R, Kosugi T, Nakamura C, Takumi S (2005) Intragenic diversity and functional conservation of the three homoeologous loci of the KN1-type homeobox gene Wknox1 in common wheat. Plant Mol Biol 57:907–924. doi:10.1007/s11103-005-3247-2

    Article  CAS  PubMed  Google Scholar 

  • Nishimura A, Tamaoki M, Sato Y, Matsuoka M (1999) The expression of tobacco knotted1-type class 1 homeobox genes corresponds to regions predicted by the cytohistological zonation model. Plant J 18:337–347. doi:10.1046/j.1365-313X.1999.00457.x

    Article  CAS  PubMed  Google Scholar 

  • Nishimura A, Tamaoki M, Sakamoto T, Matsuoka M (2000) Over-expression of tobacco knotted1-type class1 homeobox genes alters various leaf morphology. Plant Cell Physiol 41:583–590

    CAS  PubMed  Google Scholar 

  • Sato Y, Tamaoki M, Murakami T, Yamamoto N, Kano-Murakami Y, Matsuoka M (1996a) Abnormal cell divisions in leaf primordial caused by the expression of the rice homeobox gene, OSH1, lead to altered morphology of leaves in transgenic tobacco. Mol Gen Genet 251:13–22

    CAS  PubMed  Google Scholar 

  • Sato Y, Hong S-K, Tagiri A, Kitano H, Yamamoto N, Nagato Y, Matsuoka M (1996b) A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis. Proc Natl Acad Sci USA 93:8117–8122. doi:10.1073/pnas.93.15.8117

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Sentoku N, Nagato Y, Matsuoka M (1998) Isolation and characterization of a rice homeobox gene, OSH15. Plant Mol Biol 38:983–998. doi:10.1023/A:1006065622251

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Sentoku N, Miura Y, Hirochika H, Kitano H, Matsuoka M (1999) Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J 18:992–1002. doi:10.1093/emboj/18.4.992

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger R, Becraft PW, Hake S, Freeling M (1995) Ectopic expression of the knox homeobox gene rough sheath1 alters cell fate in the maize leaf. Genes Dev 9:2292–2304. doi:10.1101/gad.9.18.2292

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger R, Tsiantis M, Freeling M, Langdale JA (1998) The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development 125:2857–2865

    CAS  PubMed  Google Scholar 

  • Sears ER (1966) Nullisomic–tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulation and plant genetics. Oliver and Boyd, Edinburgh, pp 29–45

    Google Scholar 

  • Sentoku N, Sato Y, Kurata N, Ito Y, Kitano H, Matsuoka M (1999) Regional expression of the rice KN1-type homeobox gene family during embryo, shoot, and flower development. Plant Cell 11:1651–1663

    Article  CAS  PubMed  Google Scholar 

  • Shitsukawa N, Tahira C, Kassai K, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K (2007) Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell 19:1723–1737. doi:10.1105/tpc.107.051813

    Article  CAS  PubMed  Google Scholar 

  • Smith HMS, Hake S (2003) The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell 16:1717–1727. doi:10.1105/tpc.012856

    Article  Google Scholar 

  • Smith LG, Jackson D, Hake S (1995) Expression of knotted1 marks shoot meristem formation during maize embryogenesis. Dev Genet 16:344–348. doi:10.1002/dvg.1020160407

    Article  Google Scholar 

  • Takumi S, Kosugi T, Murai K, Mori N, Nakamura C (2000) Molecular cloning of three homoeologous cDNAs encoding orthologs of the maize KNOTTED1 homeobox protein from young spikes of hexaploid wheat. Gene 249:171–181. doi:10.1016/S0378-1119(00)00164-5

    Article  CAS  PubMed  Google Scholar 

  • Theodoris G, Inada N, Freeling M (2003) Conservation and molecular dissection of ROUGH SHEATH2 and ASYMMETRIC LEAVES1 function in leaf development. Proc Natl Acad Sci USA 100:6837–6842. doi:10.1073/pnas.1132113100

    Article  CAS  PubMed  Google Scholar 

  • Timmermans MCP, Hudson A, Becraft PW, Nelson T (1999) ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284:151–153. doi:10.1126/science.284.5411.151

    Article  CAS  PubMed  Google Scholar 

  • Tsiantis M, Schneeberger R, Golz JF, Freeliing M, Langdale JA (1999) The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284:154–156. doi:10.1126/science.284.5411.154

    Article  CAS  PubMed  Google Scholar 

  • Venglat SP, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, Keller W, Martienssen R, Selvaraj G, Datla R (2002) The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proc Natl Acad Sci USA 99:4730–4735. doi:10.1073/pnas.072626099

    Article  CAS  PubMed  Google Scholar 

  • Vollbrecht E, Reiser L, Hake S (2000) Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 127:3161–3172

    CAS  PubMed  Google Scholar 

  • Waites R, Hudson A (1995) Phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121:2143–2154

    CAS  Google Scholar 

  • Waites R, Selvadurai HRN, Oliver IR, Hudson A (1998) The Phantastica gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93:779–789. doi:10.1016/S0092-8674(00)81439-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Hirabayashi for her technical assistance, and Drs. K. Mizumoto and F. Kobayashi for helpful discussions. The EST clone (whyd13d14), and seeds of nullitetrasomics and einkorn wheat were supplied by the National BioResource Project-Wheat (Japan; www.nbrp.jp). This work was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (no. 17780005) to ST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Takumi.

Additional information

Ryoko Morimoto and Emi Nishioka are contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 [INSERT CAPTION HERE] (PPT 150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morimoto, R., Nishioka, E., Murai, K. et al. Functional conservation of wheat orthologs of maize rough sheath1 and rough sheath2 genes. Plant Mol Biol 69, 273–285 (2009). https://doi.org/10.1007/s11103-008-9422-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9422-5

Keywords

Navigation