Plant Molecular Biology

, 69:347 | Cite as

Hormone interactions during vascular development

  • Jan Dettmer
  • Annakaisa Elo
  • Ykä Helariutta


Vascular tissue in plants is unique due to its diverse and dynamic cellular patterns. Signals controlling vascular development have only recently started to emerge through biochemical, genetic, and genomic approaches in several organisms, such as Arabidopsis, Populus, and Zinnia. These signals include hormones (auxin, brassinosteroids, and cytokinins, in particular), other small regulatory molecules, their transporters, receptors, and various transcriptional regulators. In recent years it has become apparent that plant growth regulators rarely act alone, but rather their signaling pathways are interlocked in complex networks; for example, polar auxin transport (PAT) regulates vascular development during various stages and an emerging theme is its modulation by other growth regulators, depending on the developmental context. Also, several synergistic or antagonistic interactions between various growth regulators have been described. Furthermore, shoot–root interactions appear to be important for this signal integration.


Vascular meristem HD-ZIPIII genes Auxin Cytokinin 



We thank Anthony Bishopp for critical reading of the manuscript. JD is supported by the European Molecular Biology Organisation (EMBO, ALTF 450-2007).


  1. Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121:4171–4182PubMedGoogle Scholar
  2. Baurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664. doi: 10.1016/j.cell.2006.05.005 PubMedGoogle Scholar
  3. Berleth T, Scarpella E, Prusinkiewicz P (2007) Towards the systems biology of auxin-transport-mediated patterning. Trends Plant Sci 12:151–159. doi: 10.1016/j.tplants.2007.03.005 PubMedGoogle Scholar
  4. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW et al (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960. doi: 10.1126/science.1090022 PubMedGoogle Scholar
  5. Bishopp A, Mähönen AP, Helariutta Y (2006) Signs of change: hormone receptors that regulate plant development. Development 133:1857–1869PubMedGoogle Scholar
  6. Bjorklund S, Antti H, Uddestrand I, Moritz T, Sundberg B (2007) Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511. doi: 10.1111/j.1365-313X.2007.03250.x PubMedGoogle Scholar
  7. Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–186. doi: 10.1038/nature02100 PubMedGoogle Scholar
  8. Bowman JL (2004) Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity? Bioessays 26:938–942. doi: 10.1002/bies.20103 PubMedGoogle Scholar
  9. Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J, Dinneny JR et al (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806. doi: 10.1126/science.1146265 PubMedGoogle Scholar
  10. Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng JC et al (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351. doi: 10.1242/dev.01403 PubMedGoogle Scholar
  11. Carland FM, Nelson T (2004) Cotyledon vascular pattern2-mediated inositol (1,4,5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. Plant Cell 16:1263–1275. doi: 10.1105/tpc.021030 PubMedGoogle Scholar
  12. Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T (2002) The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14:2045–2058. doi: 10.1105/tpc.003939 PubMedGoogle Scholar
  13. Carlsbecker A, Helariutta Y (2005) Phloem and xylem specification: pieces of the puzzle emerge. Curr Opin Plant Biol 8:512–517. doi: 10.1016/j.pbi.2005.07.001 PubMedGoogle Scholar
  14. Casson SA, Chilley PM, Topping JF, Evans IM, Souter MA, Lindsey K (2002) The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. Plant Cell 14:1705–1721. doi: 10.1105/tpc.002618 PubMedGoogle Scholar
  15. Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BD et al (1999) The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11:207–221PubMedGoogle Scholar
  16. Clark SE, Running MP, Meyerowitz EM (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119:397–418PubMedGoogle Scholar
  17. Clark SE, Running ME, Meyerowitz EM (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121:2057–2067Google Scholar
  18. Clay NK, Nelson T (2005) Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol 138:767–777. doi: 10.1104/pp.104.055756 PubMedGoogle Scholar
  19. Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P et al (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682. doi: 10.1016/j.cub.2007.02.047 PubMedGoogle Scholar
  20. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445. doi: 10.1038/nature03543 PubMedGoogle Scholar
  21. Digby J, Wareing PF (1966) The effect of applied growth hormones on cambial division and the differentiation of the cambial derivates. Ann Bot (Lond) 30:539–548Google Scholar
  22. Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A et al (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774. doi: 10.1016/j.cub.2003.09.035 PubMedGoogle Scholar
  23. Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788. doi: 10.1038/77355 PubMedGoogle Scholar
  24. Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11:1251–1260. doi: 10.1016/S0960-9822(01)00392-X PubMedGoogle Scholar
  25. Fisher K, Turner S (2007) PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 12:1061–1066. doi: 10.1016/j.cub.2007.05.049 Google Scholar
  26. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T et al (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153. doi: 10.1038/nature02085 PubMedGoogle Scholar
  27. Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5:379–391. doi: 10.1038/nrm1364 PubMedGoogle Scholar
  28. Fukuda H, Komamine A (1980) Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol 65:57–60PubMedCrossRefGoogle Scholar
  29. Fukuda H, Hirakawa Y, Sawa S (2007) Peptide signaling in vascular development. Curr Opin Plant Biol 10:477–482. doi: 10.1016/j.pbi.2007.08.013 PubMedGoogle Scholar
  30. Gouwentak C (1941) Cambial activity as dependent on the presence of growth hormone and the presence of non-resting conditions of stems. Proc Ned Akad V Wetensch, Amsterdam 44:654–663Google Scholar
  31. Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411. doi: 10.1093/emboj/17.5.1405 PubMedGoogle Scholar
  32. Hawker NP, Bowman JL (2004) Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiol 135:2261–2270. doi: 10.1104/pp.104.040196 PubMedGoogle Scholar
  33. Higuchi M, Pischke MS, Mähönen AP, Miyawaki K, Hashimoto Y, Seki M et al (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA 101:8821–8826. doi: 10.1073/pnas.0402887101 PubMedGoogle Scholar
  34. Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389. doi: 10.1038/35096500 PubMedGoogle Scholar
  35. Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T et al (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063. doi: 10.1038/35059117 PubMedGoogle Scholar
  36. Ishida K, Yamashino T, Yokoyama A, Mizuno T (2008) Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant Cell Physiol 49:47–57. doi: 10.1093/pcp/pcm165 PubMedGoogle Scholar
  37. Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N et al (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845. doi: 10.1126/science.1128436 PubMedGoogle Scholar
  38. Izhaki A, Bowman JL (2007) KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 19:495–508. doi: 10.1105/tpc.106.047472 PubMedGoogle Scholar
  39. Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88. doi: 10.1038/nature02363 PubMedGoogle Scholar
  40. Junghans U, Langenfeld-Heyser R, Polle A, Teichmann T (2004) Effect of auxin transport inhibitors and ethylene on the wood anatomy of poplar. Plant Biol 6:22–29. doi: 10.1055/s-2003-44712 PubMedGoogle Scholar
  41. Kayes JM, Clark SE (1998) CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125:3843–3851PubMedGoogle Scholar
  42. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451. doi: 10.1038/nature03542 PubMedGoogle Scholar
  43. Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411:706–709. doi: 10.1038/35079629 PubMedGoogle Scholar
  44. Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T et al (2003) The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:868–874. doi: 10.1093/pcp/pcg108 PubMedGoogle Scholar
  45. Kinoshita T, Caño-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S et al (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171. doi: 10.1038/nature03227 PubMedGoogle Scholar
  46. Ko JH, Han KH (2004) Arabidopsis whole-transcriptome profiling defines the features of coordinated regulations that occur during secondary growth. Plant Mol Biol 55:433–453. doi: 10.1007/s11103-004-1051-z PubMedGoogle Scholar
  47. Koizumi K, Naramoto S, Sawa S, Yahara N, Ueda T, Nakano A, Sugiyama M, Fukuda H (2005) VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation. Development 132:1699–1711 PubMedGoogle Scholar
  48. Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J et al (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860. doi: 10.1101/gad.1331305 PubMedGoogle Scholar
  49. Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R et al (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900. doi: 10.1105/tpc.107.055863 PubMedGoogle Scholar
  50. Laux T, Mayer KFX, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96PubMedGoogle Scholar
  51. Lee JY, Colinas J, Wang JY, Mace D, Ohler U, Benfey PN (2006) Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc Natl Acad Sci USA 103:6055–6060. doi: 10.1073/pnas.0510607103 PubMedGoogle Scholar
  52. Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M et al (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175. doi: 10.1038/nature04270 PubMedGoogle Scholar
  53. Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 23:2938–2943. doi: 10.1101/gad.189200 Google Scholar
  54. Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Törmäkangas K et al (2006a) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98. doi: 10.1126/science.1118875 PubMedGoogle Scholar
  55. Mähönen AP, Higuchi M, Törmäkangas K, Miyawaki K, Pischke MS, Sussman MR et al (2006b) Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr Biol 16:1116–1122. doi: 10.1016/j.cub.2006.04.030 PubMedGoogle Scholar
  56. Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK et al (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23:3356–3364. doi: 10.1038/sj.emboj.7600340 PubMedGoogle Scholar
  57. Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131:1327–1339. doi: 10.1104/pp.013623 PubMedGoogle Scholar
  58. McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713. doi: 10.1038/35079635 PubMedGoogle Scholar
  59. McHale NA, Koning RE (2004) MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell 16:1730–1740. doi: 10.1105/tpc.021816 PubMedGoogle Scholar
  60. Men S, Boutte Y, Ikeda Y, Li X, Palme K, Stierhof YD et al (2008) Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat Cell Biol 10:237–244. doi: 10.1038/ncb1686 PubMedGoogle Scholar
  61. Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993–3006. doi: 10.1105/tpc.105.036004 PubMedGoogle Scholar
  62. Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K et al (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280. doi: 10.1105/tpc.106.047043 PubMedGoogle Scholar
  63. Motose H, Fukuda H, Sugiyama M (2001a) Involvement of local intercellular communication in the differentiation of zinnia mesophyll cells into tracheary elements. Planta 213:121–131. doi: 10.1007/s004250000482 PubMedGoogle Scholar
  64. Motose H, Sugiyama M, Fukuda H (2001b) An arabinogalactan protein(s) is a key component of a fraction that mediates local intercellular communication involved in tracheary element differentiation of zinnia mesophyll cells. Plant Cell Physiol 42:129–137. doi: 10.1093/pcp/pce014 PubMedGoogle Scholar
  65. Motose H, Sugiyama M, Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878. doi: 10.1038/nature02613 PubMedGoogle Scholar
  66. Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G et al (2002) Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. Plant J 31:675–685. doi: 10.1046/j.1365-313X.2002.01386.x PubMedGoogle Scholar
  67. Müller B, Sheen J (2007) Arabidopsis cytokinin signaling pathway. Sci STKE 407:cm5. doi:10.1126/stke.4072007cm5Google Scholar
  68. Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097. doi: 10.1038/nature06943 PubMedGoogle Scholar
  69. Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C et al (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20:843–855. doi: 10.1105/tpc.107.055798 PubMedGoogle Scholar
  70. Ohashi-Ito K, Bergmann DC (2007) Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 134:2959–2968. doi: 10.1242/dev.006296 PubMedGoogle Scholar
  71. Ohashi-Ito K, Demura T, Fukuda H (2002) Promotion of transcript accumulation of novel Zinnia immature xylem-specific HD-Zip III homeobox genes by brassinosteroids. Plant Cell Physiol 43:1146–1153. doi: 10.1093/pcp/pcf135 PubMedGoogle Scholar
  72. Ohashi-Ito K, Kubo M, Demura T, Fukuda H (2005) Class III homeodomain leucine-zipper proteins regulate xylem cell differentiation. Plant Cell Physiol 46:1646–1656. doi: 10.1093/pcp/pci180 PubMedGoogle Scholar
  73. Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17:2899–2910. doi: 10.1105/tpc.105.034876 PubMedGoogle Scholar
  74. Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857. doi: 10.1016/0092-8674(95)90288-0 PubMedGoogle Scholar
  75. Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci USA 103:11081–11085. doi: 10.1073/pnas.0602038103 PubMedGoogle Scholar
  76. Ridoutt BG, Pharis RP, Sands R (1996) Fiber length and gibberellins A1 and A20 are decreased in Eucalyptus globus by acylcyclohexanedion injected into the stem. Physiol Plant 96:559–566. doi: 10.1111/j.1399-3054.1996.tb00227.x Google Scholar
  77. Sachs T (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9:151–262Google Scholar
  78. Samuels AL, Kaneda M, Rensing KH (2006) The cell biology of wood formation: from cambial divisions to mature secondary xylem. Can J Bot 10:631–639. doi: 10.1139/B06-065 Google Scholar
  79. Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K et al (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814. doi: 10.1038/nature05703 PubMedGoogle Scholar
  80. Scarpella E, Meijer AH (2004) Pattern formation in the vascular system of monocot and dicot plant species. New Phytol 164:209–242. doi: 10.1111/j.1469-8137.2004.01191.x Google Scholar
  81. Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027. doi: 10.1101/gad.1402406 PubMedGoogle Scholar
  82. Scheres B, Xu J (2006) Polar auxin transport and patterning: grow with the flow. Genes Dev 20:922–926. doi: 10.1101/gad.1426606 PubMedGoogle Scholar
  83. Scheres B, Di Laurenzio L, Willemsen V, Hauser MT, Janmaat K, Weisbeek P et al (1995) Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62Google Scholar
  84. Scheres B, McKhann H, van den Berg C, Willemsen V, Wolkenfelt H, de Vrieze G et al (1996) Experimental and genetic analysis of root development in Arabidopsis thaliana. Plant Soil 187:97–105. doi: 10.1007/BF00011661 Google Scholar
  85. Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644. doi: 10.1016/S0092-8674(00)80700-X PubMedGoogle Scholar
  86. Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP et al (2003) Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA 100:10096–10101. doi: 10.1073/pnas.1633693100 PubMedGoogle Scholar
  87. Sibout R, Plantegenet S, Hardtke CS (2008) Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. Curr Biol 18:458–463. doi: 10.1016/j.cub.2008.02.070 PubMedGoogle Scholar
  88. Sieburth LE, Deyholos MK (2006) Vascular development: the long and winding road. Curr Opin Plant Biol 9:48–54. doi: 10.1016/j.pbi.2005.11.008 PubMedGoogle Scholar
  89. Snow R (1935) Activation of cambial growth by pure hormones. New Phytol 34:347–360. doi: 10.1111/j.1469-8137.1935.tb06853.x Google Scholar
  90. Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185. doi: 10.1105/tpc.107.052068 PubMedGoogle Scholar
  91. Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T et al (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182. doi: 10.1016/S0092-8674(00)81094-6 PubMedGoogle Scholar
  92. Tuominen H, Puech L, Fink S, Sundberg B (1997) A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol 115:577–585PubMedGoogle Scholar
  93. Turner S, Gallois P, Brown D (2007) Tracheary element differentiation. Annu Rev Plant Biol 58:407–433. doi: 10.1146/annurev.arplant.57.032905.105236 PubMedGoogle Scholar
  94. Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286PubMedGoogle Scholar
  95. Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in scots pine by positional signaling. Plant Physiol 117:113–121. doi: 10.1104/pp.117.1.113 PubMedGoogle Scholar
  96. Van Norman JM, Frederick RL, Sieburth LE (2004) BYPASS1 negatively regulates a root-derived signal that controls plant architecture. Curr Biol 14:1739–1746. doi: 10.1016/j.cub.2004.09.045 PubMedGoogle Scholar
  97. Wang Q, Little CH, Oden PC (1997) Control of longitudinal and cambial growth by gibberellins and indole-3-acetic acid in current-year shoots of Pinus sylvestris. Tree Physiol 17:715–721PubMedGoogle Scholar
  98. Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380–383. doi: 10.1038/35066597 PubMedGoogle Scholar
  99. Warening PF (1958) Interaction between indole-acetic and gibberellic acid in cambial activity and differentiation. Nature 181:1745–1746. doi: 10.1038/1811745a0 Google Scholar
  100. Weijers D, Sauer M, Meurette O, Friml J, Ljung K, Sandberg G et al (2005) Maintenance of embryonic auxin distribution for apical-basal patterning by PIN-FORMED-dependent auxin transport in Arabidopsis. Plant Cell 17:2517–2526. doi: 10.1105/tpc.105.034637 PubMedGoogle Scholar
  101. Wenkel S, Emery J, Hou BH, Evans MM, Barton MK (2007) A feedback regulatory module formed by LITTLE ZIPPER and HD-ZIPIII genes. Plant Cell 19:3379–3390. doi: 10.1105/tpc.107.055772 PubMedGoogle Scholar
  102. Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49:387–398. doi: 10.1111/j.1365-313X.2006.02977.x PubMedGoogle Scholar
  103. Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15:612–625. doi: 10.1105/tpc.008433 PubMedGoogle Scholar
  104. Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K et al (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–1023. doi: 10.1093/pcp/pce127 PubMedGoogle Scholar
  105. Yamamoto R, Demura T, Fukuda H (1997) Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol 38:980–983PubMedGoogle Scholar
  106. Yamamoto R, Fujioka S, Demura T, Takatsuto S, Yoshida S, Fukuda H (2001) Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. Plant Physiol 125:556–563. doi: 10.1104/pp.125.2.556 PubMedGoogle Scholar
  107. Ye Z-H (2002) Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol 53:183–202. doi: 10.1146/annurev.arplant.53.100301.135245 PubMedGoogle Scholar
  108. Zgurski JM, Sharma R, Bolokoski DA, Schultz EA (2005) Asymmetric auxin response precedes asymmetric growth and differentiation of asymmetric leaf1 and asymmetric leaf2 Arabidopsis leaves. Plant Cell 17:77–91. doi: 10.1105/tpc.104.026898 PubMedGoogle Scholar
  109. Zhong R, Ye ZH (2001) Alteration of auxin polar transport in the Arabidopsis ifl1 mutants. Plant Physiol 126:549–563PubMedGoogle Scholar
  110. Zhong R, Ye ZH (2004) Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol 45:369–385. doi: 10.1093/pcp/pch051 PubMedGoogle Scholar
  111. Zhong R, Richardson EA, Ye ZH (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225:1603–1611. doi: 10.1007/s00425-007-0498-y PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Plant Molecular Biology Laboratory, Department of Biological and Environmental Sciences, Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural SciencesUmeaSweden

Personalised recommendations