Skip to main content
Log in

Hormone interactions during vascular development

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Vascular tissue in plants is unique due to its diverse and dynamic cellular patterns. Signals controlling vascular development have only recently started to emerge through biochemical, genetic, and genomic approaches in several organisms, such as Arabidopsis, Populus, and Zinnia. These signals include hormones (auxin, brassinosteroids, and cytokinins, in particular), other small regulatory molecules, their transporters, receptors, and various transcriptional regulators. In recent years it has become apparent that plant growth regulators rarely act alone, but rather their signaling pathways are interlocked in complex networks; for example, polar auxin transport (PAT) regulates vascular development during various stages and an emerging theme is its modulation by other growth regulators, depending on the developmental context. Also, several synergistic or antagonistic interactions between various growth regulators have been described. Furthermore, shoot–root interactions appear to be important for this signal integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121:4171–4182

    PubMed  CAS  Google Scholar 

  • Baurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664. doi:10.1016/j.cell.2006.05.005

    PubMed  CAS  Google Scholar 

  • Berleth T, Scarpella E, Prusinkiewicz P (2007) Towards the systems biology of auxin-transport-mediated patterning. Trends Plant Sci 12:151–159. doi:10.1016/j.tplants.2007.03.005

    PubMed  CAS  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW et al (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960. doi:10.1126/science.1090022

    PubMed  CAS  Google Scholar 

  • Bishopp A, Mähönen AP, Helariutta Y (2006) Signs of change: hormone receptors that regulate plant development. Development 133:1857–1869

    PubMed  CAS  Google Scholar 

  • Bjorklund S, Antti H, Uddestrand I, Moritz T, Sundberg B (2007) Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511. doi:10.1111/j.1365-313X.2007.03250.x

    PubMed  Google Scholar 

  • Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–186. doi:10.1038/nature02100

    PubMed  CAS  Google Scholar 

  • Bowman JL (2004) Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity? Bioessays 26:938–942. doi:10.1002/bies.20103

    PubMed  CAS  Google Scholar 

  • Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J, Dinneny JR et al (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806. doi:10.1126/science.1146265

    PubMed  CAS  Google Scholar 

  • Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng JC et al (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351. doi:10.1242/dev.01403

    PubMed  CAS  Google Scholar 

  • Carland FM, Nelson T (2004) Cotyledon vascular pattern2-mediated inositol (1,4,5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. Plant Cell 16:1263–1275. doi:10.1105/tpc.021030

    PubMed  CAS  Google Scholar 

  • Carland FM, Fujioka S, Takatsuto S, Yoshida S, Nelson T (2002) The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14:2045–2058. doi:10.1105/tpc.003939

    PubMed  CAS  Google Scholar 

  • Carlsbecker A, Helariutta Y (2005) Phloem and xylem specification: pieces of the puzzle emerge. Curr Opin Plant Biol 8:512–517. doi:10.1016/j.pbi.2005.07.001

    PubMed  CAS  Google Scholar 

  • Casson SA, Chilley PM, Topping JF, Evans IM, Souter MA, Lindsey K (2002) The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. Plant Cell 14:1705–1721. doi:10.1105/tpc.002618

    PubMed  CAS  Google Scholar 

  • Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BD et al (1999) The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11:207–221

    PubMed  CAS  Google Scholar 

  • Clark SE, Running MP, Meyerowitz EM (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119:397–418

    PubMed  CAS  Google Scholar 

  • Clark SE, Running ME, Meyerowitz EM (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121:2057–2067

    CAS  Google Scholar 

  • Clay NK, Nelson T (2005) Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol 138:767–777. doi:10.1104/pp.104.055756

    PubMed  CAS  Google Scholar 

  • Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P et al (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682. doi:10.1016/j.cub.2007.02.047

    PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445. doi:10.1038/nature03543

    PubMed  CAS  Google Scholar 

  • Digby J, Wareing PF (1966) The effect of applied growth hormones on cambial division and the differentiation of the cambial derivates. Ann Bot (Lond) 30:539–548

    CAS  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A et al (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774. doi:10.1016/j.cub.2003.09.035

    PubMed  CAS  Google Scholar 

  • Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788. doi:10.1038/77355

    PubMed  CAS  Google Scholar 

  • Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11:1251–1260. doi:10.1016/S0960-9822(01)00392-X

    PubMed  CAS  Google Scholar 

  • Fisher K, Turner S (2007) PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 12:1061–1066. doi:10.1016/j.cub.2007.05.049

    Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T et al (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153. doi:10.1038/nature02085

    PubMed  CAS  Google Scholar 

  • Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5:379–391. doi:10.1038/nrm1364

    PubMed  CAS  Google Scholar 

  • Fukuda H, Komamine A (1980) Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol 65:57–60

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H, Hirakawa Y, Sawa S (2007) Peptide signaling in vascular development. Curr Opin Plant Biol 10:477–482. doi:10.1016/j.pbi.2007.08.013

    PubMed  CAS  Google Scholar 

  • Gouwentak C (1941) Cambial activity as dependent on the presence of growth hormone and the presence of non-resting conditions of stems. Proc Ned Akad V Wetensch, Amsterdam 44:654–663

    CAS  Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411. doi:10.1093/emboj/17.5.1405

    PubMed  CAS  Google Scholar 

  • Hawker NP, Bowman JL (2004) Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiol 135:2261–2270. doi:10.1104/pp.104.040196

    PubMed  CAS  Google Scholar 

  • Higuchi M, Pischke MS, Mähönen AP, Miyawaki K, Hashimoto Y, Seki M et al (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA 101:8821–8826. doi:10.1073/pnas.0402887101

    PubMed  CAS  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389. doi:10.1038/35096500

    PubMed  CAS  Google Scholar 

  • Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T et al (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063. doi:10.1038/35059117

    PubMed  CAS  Google Scholar 

  • Ishida K, Yamashino T, Yokoyama A, Mizuno T (2008) Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant Cell Physiol 49:47–57. doi:10.1093/pcp/pcm165

    PubMed  CAS  Google Scholar 

  • Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N et al (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845. doi:10.1126/science.1128436

    PubMed  CAS  Google Scholar 

  • Izhaki A, Bowman JL (2007) KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 19:495–508. doi:10.1105/tpc.106.047472

    PubMed  CAS  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88. doi:10.1038/nature02363

    PubMed  CAS  Google Scholar 

  • Junghans U, Langenfeld-Heyser R, Polle A, Teichmann T (2004) Effect of auxin transport inhibitors and ethylene on the wood anatomy of poplar. Plant Biol 6:22–29. doi:10.1055/s-2003-44712

    PubMed  CAS  Google Scholar 

  • Kayes JM, Clark SE (1998) CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125:3843–3851

    PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451. doi:10.1038/nature03542

    PubMed  CAS  Google Scholar 

  • Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411:706–709. doi:10.1038/35079629

    PubMed  CAS  Google Scholar 

  • Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T et al (2003) The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:868–874. doi:10.1093/pcp/pcg108

    PubMed  CAS  Google Scholar 

  • Kinoshita T, Caño-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S et al (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171. doi:10.1038/nature03227

    PubMed  CAS  Google Scholar 

  • Ko JH, Han KH (2004) Arabidopsis whole-transcriptome profiling defines the features of coordinated regulations that occur during secondary growth. Plant Mol Biol 55:433–453. doi:10.1007/s11103-004-1051-z

    PubMed  CAS  Google Scholar 

  • Koizumi K, Naramoto S, Sawa S, Yahara N, Ueda T, Nakano A, Sugiyama M, Fukuda H (2005) VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation. Development 132:1699–1711

    PubMed  CAS  Google Scholar 

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J et al (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860. doi:10.1101/gad.1331305

    PubMed  CAS  Google Scholar 

  • Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R et al (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900. doi:10.1105/tpc.107.055863

    PubMed  CAS  Google Scholar 

  • Laux T, Mayer KFX, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    PubMed  CAS  Google Scholar 

  • Lee JY, Colinas J, Wang JY, Mace D, Ohler U, Benfey PN (2006) Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc Natl Acad Sci USA 103:6055–6060. doi:10.1073/pnas.0510607103

    PubMed  CAS  Google Scholar 

  • Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M et al (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175. doi:10.1038/nature04270

    PubMed  CAS  Google Scholar 

  • Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 23:2938–2943. doi:10.1101/gad.189200

    Google Scholar 

  • Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Törmäkangas K et al (2006a) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98. doi:10.1126/science.1118875

    PubMed  Google Scholar 

  • Mähönen AP, Higuchi M, Törmäkangas K, Miyawaki K, Pischke MS, Sussman MR et al (2006b) Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr Biol 16:1116–1122. doi:10.1016/j.cub.2006.04.030

    PubMed  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK et al (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23:3356–3364. doi:10.1038/sj.emboj.7600340

    PubMed  CAS  Google Scholar 

  • Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131:1327–1339. doi:10.1104/pp.013623

    PubMed  CAS  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713. doi:10.1038/35079635

    PubMed  CAS  Google Scholar 

  • McHale NA, Koning RE (2004) MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell 16:1730–1740. doi:10.1105/tpc.021816

    PubMed  CAS  Google Scholar 

  • Men S, Boutte Y, Ikeda Y, Li X, Palme K, Stierhof YD et al (2008) Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat Cell Biol 10:237–244. doi:10.1038/ncb1686

    PubMed  CAS  Google Scholar 

  • Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993–3006. doi:10.1105/tpc.105.036004

    PubMed  CAS  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K et al (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280. doi:10.1105/tpc.106.047043

    PubMed  CAS  Google Scholar 

  • Motose H, Fukuda H, Sugiyama M (2001a) Involvement of local intercellular communication in the differentiation of zinnia mesophyll cells into tracheary elements. Planta 213:121–131. doi:10.1007/s004250000482

    PubMed  CAS  Google Scholar 

  • Motose H, Sugiyama M, Fukuda H (2001b) An arabinogalactan protein(s) is a key component of a fraction that mediates local intercellular communication involved in tracheary element differentiation of zinnia mesophyll cells. Plant Cell Physiol 42:129–137. doi:10.1093/pcp/pce014

    PubMed  CAS  Google Scholar 

  • Motose H, Sugiyama M, Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878. doi:10.1038/nature02613

    PubMed  CAS  Google Scholar 

  • Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G et al (2002) Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. Plant J 31:675–685. doi:10.1046/j.1365-313X.2002.01386.x

    PubMed  CAS  Google Scholar 

  • Müller B, Sheen J (2007) Arabidopsis cytokinin signaling pathway. Sci STKE 407:cm5. doi:10.1126/stke.4072007cm5

  • Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097. doi:10.1038/nature06943

    PubMed  Google Scholar 

  • Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C et al (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20:843–855. doi:10.1105/tpc.107.055798

    PubMed  CAS  Google Scholar 

  • Ohashi-Ito K, Bergmann DC (2007) Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 134:2959–2968. doi:10.1242/dev.006296

    PubMed  CAS  Google Scholar 

  • Ohashi-Ito K, Demura T, Fukuda H (2002) Promotion of transcript accumulation of novel Zinnia immature xylem-specific HD-Zip III homeobox genes by brassinosteroids. Plant Cell Physiol 43:1146–1153. doi:10.1093/pcp/pcf135

    PubMed  CAS  Google Scholar 

  • Ohashi-Ito K, Kubo M, Demura T, Fukuda H (2005) Class III homeodomain leucine-zipper proteins regulate xylem cell differentiation. Plant Cell Physiol 46:1646–1656. doi:10.1093/pcp/pci180

    PubMed  CAS  Google Scholar 

  • Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17:2899–2910. doi:10.1105/tpc.105.034876

    PubMed  CAS  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857. doi:10.1016/0092-8674(95)90288-0

    PubMed  CAS  Google Scholar 

  • Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci USA 103:11081–11085. doi:10.1073/pnas.0602038103

    PubMed  CAS  Google Scholar 

  • Ridoutt BG, Pharis RP, Sands R (1996) Fiber length and gibberellins A1 and A20 are decreased in Eucalyptus globus by acylcyclohexanedion injected into the stem. Physiol Plant 96:559–566. doi:10.1111/j.1399-3054.1996.tb00227.x

    CAS  Google Scholar 

  • Sachs T (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9:151–262

    Google Scholar 

  • Samuels AL, Kaneda M, Rensing KH (2006) The cell biology of wood formation: from cambial divisions to mature secondary xylem. Can J Bot 10:631–639. doi:10.1139/B06-065

    Google Scholar 

  • Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K et al (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814. doi:10.1038/nature05703

    PubMed  CAS  Google Scholar 

  • Scarpella E, Meijer AH (2004) Pattern formation in the vascular system of monocot and dicot plant species. New Phytol 164:209–242. doi:10.1111/j.1469-8137.2004.01191.x

    CAS  Google Scholar 

  • Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027. doi:10.1101/gad.1402406

    PubMed  CAS  Google Scholar 

  • Scheres B, Xu J (2006) Polar auxin transport and patterning: grow with the flow. Genes Dev 20:922–926. doi:10.1101/gad.1426606

    PubMed  CAS  Google Scholar 

  • Scheres B, Di Laurenzio L, Willemsen V, Hauser MT, Janmaat K, Weisbeek P et al (1995) Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62

    CAS  Google Scholar 

  • Scheres B, McKhann H, van den Berg C, Willemsen V, Wolkenfelt H, de Vrieze G et al (1996) Experimental and genetic analysis of root development in Arabidopsis thaliana. Plant Soil 187:97–105. doi:10.1007/BF00011661

    CAS  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644. doi:10.1016/S0092-8674(00)80700-X

    PubMed  CAS  Google Scholar 

  • Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP et al (2003) Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA 100:10096–10101. doi:10.1073/pnas.1633693100

    PubMed  CAS  Google Scholar 

  • Sibout R, Plantegenet S, Hardtke CS (2008) Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. Curr Biol 18:458–463. doi:10.1016/j.cub.2008.02.070

    PubMed  CAS  Google Scholar 

  • Sieburth LE, Deyholos MK (2006) Vascular development: the long and winding road. Curr Opin Plant Biol 9:48–54. doi:10.1016/j.pbi.2005.11.008

    PubMed  CAS  Google Scholar 

  • Snow R (1935) Activation of cambial growth by pure hormones. New Phytol 34:347–360. doi:10.1111/j.1469-8137.1935.tb06853.x

    Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185. doi:10.1105/tpc.107.052068

    PubMed  CAS  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T et al (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182. doi:10.1016/S0092-8674(00)81094-6

    PubMed  CAS  Google Scholar 

  • Tuominen H, Puech L, Fink S, Sundberg B (1997) A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol 115:577–585

    PubMed  CAS  Google Scholar 

  • Turner S, Gallois P, Brown D (2007) Tracheary element differentiation. Annu Rev Plant Biol 58:407–433. doi:10.1146/annurev.arplant.57.032905.105236

    PubMed  CAS  Google Scholar 

  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    PubMed  CAS  Google Scholar 

  • Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in scots pine by positional signaling. Plant Physiol 117:113–121. doi:10.1104/pp.117.1.113

    PubMed  CAS  Google Scholar 

  • Van Norman JM, Frederick RL, Sieburth LE (2004) BYPASS1 negatively regulates a root-derived signal that controls plant architecture. Curr Biol 14:1739–1746. doi:10.1016/j.cub.2004.09.045

    PubMed  Google Scholar 

  • Wang Q, Little CH, Oden PC (1997) Control of longitudinal and cambial growth by gibberellins and indole-3-acetic acid in current-year shoots of Pinus sylvestris. Tree Physiol 17:715–721

    PubMed  CAS  Google Scholar 

  • Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380–383. doi:10.1038/35066597

    PubMed  CAS  Google Scholar 

  • Warening PF (1958) Interaction between indole-acetic and gibberellic acid in cambial activity and differentiation. Nature 181:1745–1746. doi:10.1038/1811745a0

    Google Scholar 

  • Weijers D, Sauer M, Meurette O, Friml J, Ljung K, Sandberg G et al (2005) Maintenance of embryonic auxin distribution for apical-basal patterning by PIN-FORMED-dependent auxin transport in Arabidopsis. Plant Cell 17:2517–2526. doi:10.1105/tpc.105.034637

    PubMed  CAS  Google Scholar 

  • Wenkel S, Emery J, Hou BH, Evans MM, Barton MK (2007) A feedback regulatory module formed by LITTLE ZIPPER and HD-ZIPIII genes. Plant Cell 19:3379–3390. doi:10.1105/tpc.107.055772

    PubMed  CAS  Google Scholar 

  • Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49:387–398. doi:10.1111/j.1365-313X.2006.02977.x

    PubMed  CAS  Google Scholar 

  • Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15:612–625. doi:10.1105/tpc.008433

    PubMed  CAS  Google Scholar 

  • Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, Miwa K et al (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42:1017–1023. doi:10.1093/pcp/pce127

    PubMed  CAS  Google Scholar 

  • Yamamoto R, Demura T, Fukuda H (1997) Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol 38:980–983

    PubMed  CAS  Google Scholar 

  • Yamamoto R, Fujioka S, Demura T, Takatsuto S, Yoshida S, Fukuda H (2001) Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. Plant Physiol 125:556–563. doi:10.1104/pp.125.2.556

    PubMed  CAS  Google Scholar 

  • Ye Z-H (2002) Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol 53:183–202. doi:10.1146/annurev.arplant.53.100301.135245

    PubMed  CAS  Google Scholar 

  • Zgurski JM, Sharma R, Bolokoski DA, Schultz EA (2005) Asymmetric auxin response precedes asymmetric growth and differentiation of asymmetric leaf1 and asymmetric leaf2 Arabidopsis leaves. Plant Cell 17:77–91. doi:10.1105/tpc.104.026898

    PubMed  CAS  Google Scholar 

  • Zhong R, Ye ZH (2001) Alteration of auxin polar transport in the Arabidopsis ifl1 mutants. Plant Physiol 126:549–563

    PubMed  CAS  Google Scholar 

  • Zhong R, Ye ZH (2004) Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol 45:369–385. doi:10.1093/pcp/pch051

    PubMed  CAS  Google Scholar 

  • Zhong R, Richardson EA, Ye ZH (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225:1603–1611. doi:10.1007/s00425-007-0498-y

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Anthony Bishopp for critical reading of the manuscript. JD is supported by the European Molecular Biology Organisation (EMBO, ALTF 450-2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ykä Helariutta.

Additional information

Jan Dettmer and Annakaisa Elo contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dettmer, J., Elo, A. & Helariutta, Y. Hormone interactions during vascular development. Plant Mol Biol 69, 347–360 (2009). https://doi.org/10.1007/s11103-008-9374-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9374-9

Keywords

Navigation