Skip to main content
Log in

P19-dependent and P19-independent reversion of F1-V gene silencing in tomato

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

As a part of a project to develop a plant-made plague vaccine, we expressed the Yersinia pestis F1-V antigen fusion protein in tomato. We discovered that in some of these plants the expression of the f1-v gene was undetectable in leaves and fruit by ELISA, even though they had multiple copies of f1-v according to Southern-blot analysis. A likely explanation of these results is the phenomenon of RNA silencing, a group of RNA-based processes that produces sequence-specific inhibition of gene expression and may result in transgene silencing in plants. Here we report the reversion of the f1-v gene silencing in transgenic tomato plants through two different mechanisms. In the P19-dependent Reversion or Type I, the viral suppressor of gene silencing, P19, induces the reversion of gene silencing. In the P19-independent Reversion or Type II, the f1-v gene expression is restored after the substantial loss of gene copies as a consequence of transgene segregation in the progeny. The transient and stable expression of the p19 gene driven by a constitutive promoter as well as an ethanol inducible promoter induced a P19-dependent reversion of f1-v gene silencing. In particular, the second generation plant 3D1.6 had the highest P19 protein levels and correlated with the highest F1-V protein accumulation, almost a three-fold increase of F1-V protein levels in fruit than that previously reported for the non-silenced F1-V elite tomato lines. These results confirm the potential exploitation of P19 to substantially increase the expression of value-added proteins in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PTGS:

Post-transcriptional gene silencing

RDR:

RNA-dependent RNA polymerase.

RISC:

RNA-induced silencing complex

TGS:

Transcriptional gene silencing

TBSV-P19 or P19:

19 kDa viral suppressor protein of TBSV

TBSV:

Tomato bushy stunt virus

TSP:

Total soluble protein

dsRNA:

Double-stranded RNA

miRNA:

Micro RNA

sRNA:

Small RNA

siRNA:

Short interfering RNA

ssRNA:

Single-stranded RNA

ta-siRNA:

Trans-acting short interfering RNA

VIGS:

Virus-induced gene silencing

References

  • Alvarez ML, Guelman S, Halford NG, Lustig S, Reggiardo MI, Ryabushkina N, Shewry P, Stein J, Vallejos RH (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100:319–327

    Article  CAS  Google Scholar 

  • Alvarez ML, Pinyerd HL, Crisantes JD, Rigano MM, Pinkhasov J, Walmsley AM, Mason HS, Cardineau GA (2006) Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice. Vaccine 24:2477–2490

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe DC (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Becker D, Kemper E, Schell J, Materson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20:1195–1197

    Article  PubMed  CAS  Google Scholar 

  • Beclin C, Boutet S, Waterhouse P, Vaucheret H (2002) A branched pathway for transgene-induced RNA silencing in plants. Curr Biol 12:684–688

    Article  PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy A, Hammond S, Hannon G (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends in Genet 22:268–280

    Article  CAS  Google Scholar 

  • Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja V, Carrington JC (2004) Viral RNA silencing suppressors inhibit the miRNA pathway at an intermediate step. Genes Dev 18:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Curtiss R, Cardineau GA (1990) Oral immunization by transgenic plants. World patent application WO 90/02484, 22 March 1990

  • De Buck S, Jacobs A, Van Montagu M, Depicker A (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20:295–304

    Article  PubMed  Google Scholar 

  • De Buck S, Van Montagu M, Depicker A (2001) Transgene silencing of invertedly repeated transgenes is released upon deletion of one of the transgenes involved. Plant Mol Biol 46:433–445

    Article  PubMed  Google Scholar 

  • De Wilde C, Van Houdt H, De Buck S, Angenon G, De Jaeger G, Depicker A (2000) Plants as bioreactors for protein production: avoiding the problem of Transgene silencing. Plant Mol Biol 43:347–359

    Article  PubMed  Google Scholar 

  • Deveaux Y, Peaucelle A, Roberts GR, Coen E, Simon R, Mizukami Y, Traas J, Murray JA, Doonan JH, Laufs P (2003) The ethanol switch: a tool for tissue-specific gene induction during plant development. Plant J 36:918–930

    Article  PubMed  CAS  Google Scholar 

  • Dunoyer P, Lecellier CH, Parizotto EA, Himber Ch, Voinnet O (2004) Probing the MicroRNA and small interfering RNA pathway with virus-encoded suppressors of RNA silencing. The Plant Cell 16:1235–1250

    Article  PubMed  CAS  Google Scholar 

  • Elmayan T, Vaucheret H (1996) Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J 9:787–797

    Article  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  PubMed  CAS  Google Scholar 

  • Haq T, Mason H, Clements J, Arntzen Ch (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268:714–716

    Article  PubMed  CAS  Google Scholar 

  • Hearne P, Knorr D, Hillman B, Morris T (1990) The complete genome structure and synthesis of infectious RNA from clones of Tomato Bushy Stunt Virus. Virology 177:141–151

    Article  PubMed  CAS  Google Scholar 

  • Heath D, Anderson G, Mauro M, Welkos S, Andrews G, Adamovicz J (1998) Protection against experimental bubonic and pneumonic plague by recombinant capsular F1-V antigen fusion protein vaccine. Vaccine 16:1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykas PJJ, Schilpperoort RA (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefasiens Ti plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hood E, Gelvin S, Melchers S, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 31:957–973

    Article  PubMed  CAS  Google Scholar 

  • Kapila J, De Rycke R, Van montagu M, Angenon G (1997) An Agrobaterium-mediated transient gene expressión system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Lakatos L, Szittya G, Silhavy D, Burgyan J (2004) Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 23:876–884

    Article  PubMed  CAS  Google Scholar 

  • Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC, Liu Y, Dolja V, Fernandez Calvino L, Lopez-moya J, Burguyan J (2006) Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25:2768–2780

    Article  PubMed  CAS  Google Scholar 

  • Li F, Ding S (2006) Virus counter-defense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 60:503–531

    Article  PubMed  CAS  Google Scholar 

  • Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431:364–370

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Parks G, Endres MW, Baulcombe D, Bowman LH, Pruss GJ, Vance VB (2002) The amplicon-plus system for high-level expression of transgenes in plants. Nat Biotechnol 20:622–625

    Article  PubMed  CAS  Google Scholar 

  • Marathe R, Smith TH, Anandalakshmi R, Bowman LH, Fagard M, Mourrain P, Vaucheret H, Vance VB (2000) Plant viral suppressors of post-transcriptional silencing do not suppress transcriptional silencing. Plant J 22:51–59

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Priming M, Trnovsky J, Matzke AJ (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8:643–649

    PubMed  CAS  Google Scholar 

  • Meins F, Si-Ammour A, Blevins T (2005) RNA silencing systems and their relevance to plant development. Annu Rev Cell Dev Biol 21:297–318

    Article  PubMed  CAS  Google Scholar 

  • Moissiard G, Voinnet O (2004) Viral suppression of RNA silencing in plants. Mol Plant Pathol 5:71–82

    Article  CAS  Google Scholar 

  • Mor TS, Mason HS, Kirk DD, Arntzen CA, Cardineau GA (2004) Plants as a production and delivery vehicles for orally delivered subunit vaccines. In: Levine MM, Woodrow GC, Kaper JB, Cobon GS (eds) New generation vaccines, 3rd edn. Marcel Dekker, New York, pp 305–311

    Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous gene in trans. Plant Cell 2:279–289

    Article  PubMed  CAS  Google Scholar 

  • Oksman-Caldentey KM, Barz W (eds) (2002) Plant biotechnology and transgenic plants. Marcel Dekker, New York

    Google Scholar 

  • Omarov R, Sparks K, Smith L, Zindovic J, Scholthof HB (2006) Biological relevance of a stable biochemical interaction between the tombusvirus-encoded P19 and short interfering RNAs. J Virol 80:3000–3008

    Article  PubMed  CAS  Google Scholar 

  • Palatnik J, Alle E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  PubMed  CAS  Google Scholar 

  • Papp I, Mette MF, Aufzats W, Daxinger L, Schauer SE, Ray A, Van der Winden J, Matzke M, Matzke AJ (2003) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132:1382–1390

    Article  PubMed  CAS  Google Scholar 

  • Qiu W, Park JW, Scholthof HB (2002) Tombosvirus P19-mediated suppression of virus-induced gene silencing is controlled by genetic and dosage features that influence pathogenicity. Mol Plant Microbe Interact 15:269–280

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  • Roth BM, Pruss GJ, Vance VB (2004) Plant viral suppresors of RNA silencing. Virus Res 102:97–108

    Article  PubMed  CAS  Google Scholar 

  • Ru P, Xu L, Ma H, Huang H (2006) Plant fertility defects induced by the enhanced expression of micro-RNA167. Cell Res 16:457–465

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fisher E, Maniatis T (1981) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Scholthof H (2006) The Tombusvirus-encoded P19: from irrelevance to elegance. Nat Rev Microbiol 4:405–411

    Article  PubMed  CAS  Google Scholar 

  • Scholthof H, Morris T, Jackson A (1993) The capsid protein gene of Tomato Bushy Stunt Virus is dispensable for systemic movement and can be replaced for localized expression of foreign genes. Mol Plant Microbe Interact 6:309–322

    CAS  Google Scholar 

  • Siddiqui S, Sarmiento C, Truve E, Lehto H, Lehto K (2008) Phenotypes and functional effects caused by various viral RNA silencing suppressors in transgenic Nicotiana benthamiana and N. tabacum. Mol Plant Microbe Interact 21:178–187

    Article  PubMed  CAS  Google Scholar 

  • Silhavy D, Molnar A, Lucioli A, Sitia G, Homyik C, Tavazza M, Burgyan J (2002) A viral protein suppresses RNA silencing and binds, silencing-generated, 21 to 25-nucleotide double-stranded RNAs. EMBO J 21:3070–3080

    Article  PubMed  CAS  Google Scholar 

  • Sweetman JP, Chu C, Greenland AJ, Sonnewald U, Jepson I (2002) Ethanol vapor is an efficient inducer of the alc gene expression system in model and crop plant species. Plant Physiol 129:943–948

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Newton RJ, Weidner DA (2007) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pines. J Exp Bot 58:545–554

    Article  PubMed  CAS  Google Scholar 

  • Thanavala Y, Huang Z, Mason HS (2006) Plant-derived vaccines: a look back at the highlights and a view to the challenges on the road ahead. Expert Rev Vaccines 5:249–260

    Article  PubMed  CAS  Google Scholar 

  • Thompson C, Movva N, Tizard R, Crameri R, Davies J, Lauwereys M, Botterman J (1987) Characterization of the herbicide resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523

    PubMed  CAS  Google Scholar 

  • Van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    Article  PubMed  Google Scholar 

  • Vaucheret H (2005) Micro-RNA dependent Trans-Acting siRNA production. Sci STKE 300:43

    Google Scholar 

  • Vaucheret H, Beclin Ch, Elmayan T, Feuerbach F, Godon Ch, Morel JB, Mourrain P, Paulaqui JC, Vernhettes S (1998) Transgene-induced gene silencing in plants. Plant J 16:651–619

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing : A general strategy used by diverse DNA and RNA viruses in plants. Proc Natl Acad Sci USA 99:14147–14152

    Article  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  PubMed  CAS  Google Scholar 

  • Walmsley AM, Alvarez ML, Jin Y, Kirk DD, Lee SM, Pinkhasov J, Rigano MM, Arntzen Ch, Mason H (2003) Expression of the B subunit of Escherichia coli heat-labile enterotoxin as a fusion protein in transgenic tomato. Plant cell Rep 21:1020–1026

    Article  PubMed  CAS  Google Scholar 

  • Ye K, Malinina L, Patel DJ (2003) Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 426:874–878

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotides intervals. Cell 101:25–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Herman Scholthof for providing the pTBSV-100 and the primary antibody against TBSV-P19, and to Dr. Hugh Mason for plasmid pAlc:p19. We want to thank Angela Rojas and Mike Ewing for technical assistance with tissue culture and to Jason Crisantes for maintenance of the tomato plants at the greenhouse facilities. The authors are also very grateful with Paul Arnold for his help with the editing of the paper. This project was partially supported by the US Department of Defense grant DAMD17–02-2-0015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lucrecia Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, M.L., Pinyerd, H.L., Topal, E. et al. P19-dependent and P19-independent reversion of F1-V gene silencing in tomato. Plant Mol Biol 68, 61–79 (2008). https://doi.org/10.1007/s11103-008-9352-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9352-2

Keywords

Navigation