Skip to main content
Log in

Genome-wide survey of the RIP domain family in Oryza sativa and their expression profiles under various abiotic and biotic stresses

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Ribosome-inactivating proteins (RIPs) are N-glycosidases that inhibit protein synthesis by depurinating rRNA. Despite their identification more than 25 years ago, little is known about their biological functions. Here, we report a genome-wide identification of the RIP family in rice based on the complete genome sequence analysis. Our data show that rice genome encodes at least 31 members of this family and they all belong to type 1 RIP genes. This family might have evolved in parallel to species evolution and genome-wide duplications represent the major mechanism for this family expansion. Subsequently, we analyzed their expression under biotic (bacteria and fungus infection), abiotic (cold, drought and salinity) and the phytohormone ABA treatment. These data showed that some members of this family were expressed in various tissues with differentiated expression abundances whereas several members showed no expression under normal growth conditions or various environmental stresses. On the other hand, the expression of many RIP members was regulated by various abiotic and biotic stresses. All these data suggested that specific members of the RIP family in rice might play important roles in biotic and abiotic stress-related biological processes and function as a regulator of various environmental cues and hormone signaling. They may be potentially useful in improving plant tolerance to various abiotic and biotic stresses by over-expressing or suppressing these genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GUS:

β-glucuronidase

Mg:

Megnaporthe grisea

RIP:

Ribosome-inactivating proteins

Xoo:

Xanthomonas oryzae pv oryzae

References

  • Barbieri L, Valbonesi P, Bondioli M, Alvarez ML, Dal Monte P, Landini MP, Stirpe F (2001) Adenine glycosylase activity in mammalian tissues: an equivalent of ribosome-inactivating proteins. FEBS Lett 505:196–197

    Article  PubMed  CAS  Google Scholar 

  • Barbieri L, Polito L, Bolognesi A, Ciani M, Pelosi E, Farini V, Jha AK, Sharma N, Vivanco JM, Chambery A et al (2006) Ribosome-inactivating proteins in edible plants and purification and characterization of a new ribosome-inactivating protein from Cucurbita moschata. Biochim Biophys Acta (BBA) 1760:783–792

    CAS  Google Scholar 

  • Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  CAS  Google Scholar 

  • Bass HW, Krawetz JE, OBrian GR, Zinselmeier C, Habben JE, Boston RS (2004) Maize ribosome-inactivating proteins (RIPs) with distinct expression patterns have similar requirements for proenzyme activation. J Exp Bot 55:2219–2233

    Article  PubMed  CAS  Google Scholar 

  • Bieri S, Potrykus I, Fütterer J (2000) Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theor Appl Genet 100:755–763

    Article  CAS  Google Scholar 

  • Chaudhry B, Muller-Uri F, Cameron-Mills V, Gough S, Simpson D, Skriver K, Mundy J (1994) The barley 60 KDa jasmonate-induced protein (JIP60) is a novel ribosome-inactivating protein. Plant J 6:815–824

    Article  PubMed  CAS  Google Scholar 

  • Desmyter S, Vandenbussche F, Hao Q, Proost P, Peumans WJ, Van Damme EJ (2003) Type-1 ribosome-inactivating protein from iris bulbs: a useful agronomic tool to engineer virus resistance? Plant Mol Biol 51:567–576

    Article  PubMed  CAS  Google Scholar 

  • Ding ZJ, Wu XH, Wang T (2002) The rice tapetum-specific gene RA39 encodes a type I ribosome-inactivating protein. Sex Plant Reprod 15:205–212

    Article  CAS  Google Scholar 

  • Dowd PF, Mehta AD, Boston RS (1998) Relative toxicity of the maize endosperm ribosome-inactivating protein to insects. J Agric Food Chem 46:3775–3779

    Article  CAS  Google Scholar 

  • Ferreras JM, Barbieri L, Girbés T, Battelli MG, Rojo MA, Arias FJ, Rocher MA, Soriano F, Mendéz E, Stirpe F (1993) Distribution and properties of major ribosome-inactivating proteins (28 S rRNA N-glycosidases) of the plant Saponaria officinalis, L. (Caryophyllaceae). Biochim Biophys Acta 1216:31–42

    PubMed  CAS  Google Scholar 

  • Gatehouse A, Barbieri L, Stirpe F, Croy RRD (1990) Effects of ribosome inactivating proteins on insect development—differences between Lepidoptera and Coleoptera. Entomol Exp Appl 54:43–51

    Article  CAS  Google Scholar 

  • Girbes T, de Torre C, Iglesias R, Ferreras JM, Mendez E (1996) RIP for viruses. Nature 379:777–778

    Article  CAS  Google Scholar 

  • Girbes T, Ferreras JM, Arias FJ, Stirpe F (2004) Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini Rev Med Chem 4:467–482

    Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Gorschen E, Dunaeva M, Hause B, Reeh I, Wasternack C, Parthier B (1997) Expression of the ribosome-inactivating protein JIP60 from barely in transgenic tobacco leads to an abnormal phenotype and alterations on the level of translation. Planta 202:470–478

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Chan H, Wang YY, Ouyang DY, Zheng YT, Tam SC (2006) Trichosanthin suppresses the elevation of p38 MAPK, and Bcl-2 induced by HSV-1 infection in Vero cells. Life Sci 79:1287–1292

    Article  PubMed  CAS  Google Scholar 

  • Iglesias R, Perez Y, de Torre C, Ferreras JM, Antolin P, Jimenez P, Rojo MA, Mendez E, Girbes T (2005) Molecular characterization and systemic induction of single-chain ribosome-inactivating proteins (RIPs) in sugar beet (Beta vulgaris) leaves. J Exp Bot 56:1675–1684

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki T, Megumi C, Komai F, Masuda K, Oosawa K (2002) Accumulation of a 31-kDa glycoprotein in association with the expression of embryogenic potential by spinach callus in culture. Physiol Plant 114:109–115

    Article  PubMed  CAS  Google Scholar 

  • Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants, the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jiang SY, Ramachandran S (2006) Comparative and evolutionary analysis of genes encoding small GTPases and their activating proteins in eukaryotic genomes. Physiol Genomics 24:235–251

    PubMed  CAS  Google Scholar 

  • Jiang SY, Bachmann D, La H, Ma Z, Venkatesh PN, Ramamoorthy R, Ramachandran S (2007) Ds insertion mutagenesis as an efficient tool to produce diverse variations for rice breeding. Plant Mol Biol 65:385–402

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H et al (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from Japonica rice. Science 301:376–379

    Article  PubMed  Google Scholar 

  • Kim JK, Duan X, Wu R, Seok SJ, Boston RS, Jang IC, Eun MY, Nahm BH (1999) Molecular and genetic analysis of transgenic rice plants expressing the ribosome inactivating protein b-32 gene and the herbicide resistance bar gene. Mol Breed 5:85–94

    Article  CAS  Google Scholar 

  • Kumar MA, Timm DE, Neet KE, Owen WG, Peumans WJ, Rao AG (1993) Characterization of the lectin from the bulbs of Eranthis hyemalis (winter aconite) as an inhibitor of protein synthesis. J Biol Chem 268:25176–25183

    PubMed  CAS  Google Scholar 

  • Lafitte HR, Ismail A, Bennett J (2004) Abiotic stress tolerance in rice for Asia: progress and the future. Proceedings of the 4th international crop science congress, Brisbane, Australia

  • Lanceras JC, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399

    Article  PubMed  CAS  Google Scholar 

  • Lauchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa P, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Netherlands, pp 1–32

    Chapter  Google Scholar 

  • Li XD, Liu WY, Niu CI (1996) Purification of a new ribosome-inactivating protein from the seeds of Cinnamumum porrectum and characterization of the RNA N-glycosidase activity of the toxic protein. Biol Chem 377:825–831

    PubMed  CAS  Google Scholar 

  • Li XD, Chen WF, Liu WY, Wang GH (1997) Large-scale preparation of two new ribosome-inactivating proteins––cinnamomin and camphorin from the seeds of Cinnamomum camphora. Protein Expr Purif 10:27–31

    Article  PubMed  CAS  Google Scholar 

  • Lin JY, Liu K, Chen CC, Tung TC (1971) Effect of crystalline ricin on the biosynthesis of protein, RNA, and DNA in experimental tumor cells. Cancer Res 31:921–924

    PubMed  CAS  Google Scholar 

  • Lodge JK, Kaniewski WK, Tumer NE (1993) Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc Natl Acad Sci USA 90:7089–7093

    Article  PubMed  CAS  Google Scholar 

  • Logemann J, Jach G, Tommerup H, Mundy J, Schell J (1992) Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. Nat Biotechnol 10:305–308

    Article  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharnont J (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot 46:1843–1852

    Article  CAS  Google Scholar 

  • Maddaloni M, Forlani F, Balmas V, Donini G, Stasse L, Corazza L, Motto M (1997) Tolerance to the fungal pathogen Rhizoctonia solani AG4 of transgenic tobacco expressing the maize ribosome-inactivating protein b-32. Transgenic Res 6:393–402

    Article  CAS  Google Scholar 

  • Mendez E, Girbes T (2005) Molecular characterization and systemic induction of single-chain ribosome-inactivating proteins (RIPs) in sugar beet (Beta vulgaris) leaves. J Exp Bot 56:1675–1684

    Article  PubMed  Google Scholar 

  • Montanaro L, Sperti S, Stirpe F (1973) Inhibition by ricin of protein synthesis in vitro. Ribosomes as the target of the toxin. Biochem J 136:677–683

    PubMed  CAS  Google Scholar 

  • Motto M, Lupotto E (2004) The genetics and properties of cereal ribosome-inactivating proteins. Mini Rev Med Chem 4:493–503

    PubMed  CAS  Google Scholar 

  • Muller M, Dues G, Balconi C, Salamini F, Thompson RD (1997) Nitrogen and hormonal responsiveness of the 22 KDa alpha-zein and b-32 genes in maize endosperm is displayed in the absence of the transcriptional regulator Opaque-2. Plant J 12:281–291

    Article  PubMed  CAS  Google Scholar 

  • Nielsen K, Boston RS (2001) Ribosome-inactivating proteins: a plant perspective. Annu Rev Plant Physiol Plant Mol Biol 52:785–816

    Article  PubMed  CAS  Google Scholar 

  • Obrig TG, Irvin JD, Hardesty B (1973) The effect of an antiviral peptide on the ribosomal reactions of the peptide elongation enzymes, EF-I and EF-II. Arch Biochem Biophys 155:278–289

    Article  PubMed  CAS  Google Scholar 

  • Park SW, Vepachedu R, Sharma N, Vivanco JM (2004) Ribosome-inactivating proteins in plant biology. Planta 219:1093–1096

    Article  PubMed  CAS  Google Scholar 

  • Peumans WJ, Hao Q, Van Damme EJM (2001) Ribosome-inactivating proteins from plants: more than RNA N-glycosidases? FASEB J 15:1493–1506

    Article  PubMed  CAS  Google Scholar 

  • Reddy PR, Goss JA (1971) Effect of salinity on pollen I. Pollen viability as altered by increasing osmotic pressure with NaCl, MgCl2, and CaCl2. Am J Bot 58:721–725

    Article  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Lehmann J, Becker W, Apel K, Parthier B (1994) JIP60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc Natl Acad Sci USA 91:7012–7016

    Article  PubMed  CAS  Google Scholar 

  • Rippmann JF, Michalowski CB, Nelson DE, Bohnert HJ (1997) Induction of a ribosome-inactivating protein upon environmental stress. Plant Mol Biol 35:701–709

    Article  PubMed  CAS  Google Scholar 

  • Saini HS (1997) Effects of water stress on male gametophyte development in plants. Sex Plant Reprod 10:67–73

    Article  Google Scholar 

  • Schaefer SC, Gasic K, Cammue B, Broekaert W, van Damme EJ, Peumans WJ, Korban SS (2005) Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta 222:858–866

    Article  PubMed  CAS  Google Scholar 

  • Sharma N, Park SW, Vepachedu R, Barbieri L, Ciani M, Stirpe F, Savary BJ, Vivanco JM (2004) Isolation and characterization of an RIP (ribosome-inactivating protein)-like protein from tobacco with dual enzymatic activity. Plant Physiol 134:171–181

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Schinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Song SK, Choi Y, Moon YH, Kim SG, Choi YD, Lee JS (2000) Systemic induction of a Phytolacca insularis antiviral protein gene by mechanical wounding, jasmonic acid, and abscisic acid. Plant Mol Biol 43:439–450

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Battelli MG (2006) Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci 63:1850–1866

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Barbieri L, Gorini P, Valbonesi P, Bolognesi A, Polito L (1996) Activities associated with the presence of ribosome-inactivating proteins increase in senescent and stressed leaves. FEBS Lett 382:309–312

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Vepachedu R, Bais HP, Vivanco JM (2003) Molecular characterization and post-transcriptional regulation of ME1, a type-I ribosome-inactivating protein from Mirabilis expansa. Planta 217:498–506

    Article  PubMed  CAS  Google Scholar 

  • Vivanco JM, Savary BJ, Flores HE (1999) Characterization of two novel type I ribosome-inactivating proteins from the storage roots of the Andean crop Mirabilis expansa. Plant Physiol 119:1447–1456

    Article  PubMed  CAS  Google Scholar 

  • Walsh TA, Morgan AE, Hey TD (1991) Characterization and molecular cloning of a proenzyme form of a ribosome-inactivating protein from maize: novel mechanism of proenzyme activation by proteolytic removal of a 2.8-kilodalton internal peptide segment. J Biol Chem 266:23422–23427

    PubMed  CAS  Google Scholar 

  • Wei Q, Huang MX, Xu Y, Zhang XS, Chen F (2005) Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J Biosci 30:351–357

    Article  CAS  Google Scholar 

  • Wong RNS, Mak NK, Choi WT, Law PTW (1995) Increased accumulation of trichosanthin in Trichosanthes kirilowii induced by microorganisms. J Exp Bot 46:355–358

    Article  CAS  Google Scholar 

  • Xu J, Wang H, Fan J (2007) Expression of a ribosome-inactivating protein gene in bitter melon is induced by Sphaerotheca fuliginea and abiotic stimuli. Biotechnol Lett 29:1605–1610

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. Indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3(e38):0266–0281

    CAS  Google Scholar 

  • Yuan H, Ming X, Wang L, Hu P, An C, Chen Z (2002) Expression of a gene encoding trichosanthin in transgenic rice plants enhances resistance to fungus blast disease. Plant Cell Rep 20:992–998

    Article  CAS  Google Scholar 

  • Zhou X, Li XD, Yuan JZ, Tang ZH, Liu WY (2000) Toxicity of cinnamomin—a new type II ribosome-inactivating protein to bollworm and mosquito. Insect Biochem Mol Biol 30:259–264

    Article  PubMed  CAS  Google Scholar 

  • Zoubenko O, Uckun F, Hur Y, Chet I, Tumer N (1997) Plant resistance to fungal infection induced by nontoxic pokeweed antiviral protein mutants. Nat Biotechnol 15:992–996

    Article  PubMed  CAS  Google Scholar 

  • Zoubenko O, Hudak K, Tumer NE (2000) A non-toxic pokeweed antiviral protein mutant inhibits pathogen infection via a novel salicylic acid-independent pathway. Plant Mol Biol 44:219–229

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr. Parameswaran Sriram for his help in real-time PCR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Ramachandran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 21 kb)

(XLS 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, SY., Ramamoorthy, R., Bhalla, R. et al. Genome-wide survey of the RIP domain family in Oryza sativa and their expression profiles under various abiotic and biotic stresses. Plant Mol Biol 67, 603–614 (2008). https://doi.org/10.1007/s11103-008-9342-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9342-4

Keywords

Navigation