Plant Molecular Biology

, 67:455 | Cite as

Purification, cloning, functional expression and characterization of perakine reductase: the first example from the AKR enzyme family, extending the alkaloidal network of the plant Rauvolfia

  • Lianli Sun
  • Martin Ruppert
  • Yuri Sheludko
  • Heribert Warzecha
  • Yu Zhao
  • Joachim Stöckigt


Perakine reductase (PR) catalyzes an NADPH-dependent step in a side-branch of the 10-step biosynthetic pathway of the alkaloid ajmaline. The enzyme was cloned by a “reverse-genetic” approach from cell suspension cultures of the plant Rauvolfia serpentina (Apocynaceae) and functionally expressed in Escherichia coli as the N-terminal His6-tagged protein. PR displays a broad substrate acceptance, converting 16 out of 28 tested compounds with reducible carbonyl function which belong to three substrate groups: benzaldehyde, cinnamic aldehyde derivatives and monoterpenoid indole alkaloids. The enzyme has an extraordinary selectivity in the group of alkaloids. Sequence alignments define PR as a new member of the aldo-keto reductase (AKR) super family, exhibiting the conserved catalytic tetrad Asp52, Tyr57, Lys84, His126. Site-directed mutagenesis of each of these functional residues to an alanine residue results in >97.8% loss of enzyme activity, in compounds of each substrate group. PR represents the first example of the large AKR-family which is involved in the biosynthesis of plant monoterpenoid indole alkaloids. In addition to a new esterase, PR significantly extends the Rauvolfia alkaloid network to the novel group of peraksine alkaloids.


Aldo-keto reductase Functional expression Indole alkaloid metabolic network Perakine reductase Rauvolfia serpentina (Apocynaceae) 



Aldo-keto reductase




Potassium phosphate


Nitrilo-tri-acetic acid


Polyacrylamide gel electrophoresis


Perakine reductase


Rapid amplification cDNA ends


Retention time


Reverse-transcription PCR


Sodium dodecylsulphate


Thin layer chromatography



We gratefully acknowledge Prof. Friedrich Lottspeich, Mrs. Isabella Mathes and Mr. Reinhard Mentele (Max-Planck-Institut für Biochemie, Martinsried, Germany) for amino acid sequence determination, the Deutsche Forschungsgemeinschaft (Bad-Godesberg, Germany) and Fonds der Chemischen Industrie (Frankfurt/Main, Germany) for financial support. Deutscher Akademischer Austauschdienst [Bonn, Germany, DAAD/D05/06969] and the China Scholarship Council [Beijing, People’s Republic of China CSC (2004) 3067] are acknowledged for support. We appreciate very much the help of Dr. Joachim Arend (Mainz, Germany) in measuring EI-mass spectra. GC-MS analyses were performed by SpectroData, company, Biebelsheim, Germany. We thank Dipl. Ing. Wilfried Löbel for measurements. We also thank Prof. Nikolaus Amrhein (ETH Zürich, Switzerland) for helpful discussions.

Supplementary material

11103_2008_9331_MOESM1_ESM.tif (1.2 mb)
SDS-PAGE after a typical purification of heterologously expressed His-tagged PR (arrow). Proteins were stained with Coomassie-blue. Lane 1: crude protein extract; 2: flow through; 3: washing fraction; 4: protein pellet; 5: protein marker; 6: fraction of highly purified PR eluted from Ni-NTA column (TIF 1217 kb)
11103_2008_9331_MOESM2_ESM.tif (44 mb)
(a) Chemical structure and EI-MS spectrum of standard raucaffrinoline. (b) EI-MS spectrum of the enzyme product raucaffrinoline of recombinant PR from Rauvolfia (TIF 45079 kb)


  1. Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281:32395–32402PubMedCrossRefGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  3. Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97CrossRefGoogle Scholar
  4. De-Eknamkul W, Ounaroon A, Tanahashi T, Kutchan TM, Zenk MH (1997) Enzymatic condensation of dopamine and secologanin by cell-free extracts of Alangium lamarckii. Phytochemistry 45:477–484CrossRefGoogle Scholar
  5. De-Eknamkul W, Suttipanta N, Kutchan TM (2000) Purification and characterization of deacetylipecoside synthase from Alangium lamarckii Thw. Phytochemistry 55:177–181PubMedCrossRefGoogle Scholar
  6. Di Luccio E, Elling RA, Wilson DK (2006) Identification of a novel NADH-specific aldo-keto reductase using sequence and structural homologies. Biochem J 400:105–114PubMedCrossRefGoogle Scholar
  7. Dogru E, Warzecha H, Seibel F, Haebel S, Lottspeich F, Stöckigt J (2000) The gene encoding polyneuridine aldehyde esterase of monoterpenoid indole alkaloid biosynthesis in plants is an ortholog of the α/β hydrolase super family. Eur J Biochem 267:1397–1406PubMedCrossRefGoogle Scholar
  8. Falkenhagen H, Polz L, Takayama H, Kitajima M, Sakai S-I, Aimi N, Stöckigt J (1995) Substrate specificity of vinorine hydroxylase, a novel membrane-bound key enzyme of Rauvolfia indole alkaloid biosynthesis. Heterocycles 41:2683–2690CrossRefGoogle Scholar
  9. Gavidia I, Perez-Bermudez P, Seitz HU (2002) Cloning and expression of two novel aldo-keto reductases from Digitalis purpurea leaves. Eur J Biochem 269:2842–2850PubMedCrossRefGoogle Scholar
  10. Gavidia I, Tarrio R, Rodriguez-Trelles F, Perez-Bermudez P, Seitz HU (2007) Plant progesterone 5β-reductase is not homologous to the animal enzyme. Molecular evolutionary characterization of P5βR from Digitalis purpurea. Phytochemistry 68:853–864PubMedCrossRefGoogle Scholar
  11. Hyndman D, Bauman DR, Heredia VV, Penning TM (2003) The aldo-keto superfamily homepage. Chem Biol Int 143–144:621–631CrossRefGoogle Scholar
  12. Jez JM, Penning TM (2001) The aldo-keto reductase (AKR) superfamily: an update. Chem Biol Int 130–132:499–525CrossRefGoogle Scholar
  13. Jez JM, Bennett MJ, Schlegel BP, Lewis M, Penning TM (1997) Comparative anatomy of the aldo-keto reductase superfamily. Biochem J 326:625–636PubMedGoogle Scholar
  14. Jin Y, Penning TM (2007) Aldo-keto reductases and Bioactivation/detoxication. Ann Rev Phamacol Toxicol 47:263–292CrossRefGoogle Scholar
  15. Kahn MA, Siddiqui S (1972) Isolation and Structure of Raucaffrinoline, A New Alkaloid from Rauwolfia caffra Sonder. Experientia 28:127–128CrossRefGoogle Scholar
  16. Kaspera R, Croteau R (2006) Cytochrome P450 oxygenases of taxol biosynthesis. Phytochem Rev 5:433–444CrossRefGoogle Scholar
  17. Kim S-J, Kim M-R, Bedgar DL, Moinuddin SGA, Cardenas CL, Davin LB, Kang CH, Lewis NG (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. PNAS 101:1455–1460PubMedCrossRefGoogle Scholar
  18. Kutchan TM (1998) Molecular genetics of plant alkaloid biosynthesis. In: Cordell GA (ed) The alkaloids, vol 50. Academic Press, San Diego, pp 257–316Google Scholar
  19. Morita T, Huruta T, Ashiuchi M, Yagi T (2002) Characterization of recombinant YakC of Schizosaccharomyces pombe showing YakC defines a new family of aldo-keto reductases. J Biochem 132:635–641PubMedGoogle Scholar
  20. Ornstein I (1964) Disc electrophoresis I-background and theory. Ann NY Acad Sci 121:321–349PubMedCrossRefGoogle Scholar
  21. Rosenthal C, Mueller U, Panjikar S, Sun L, Ruppert M, Zhao Y, Stöckigt J (2006) Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the AKR enzyme superfamily from higher plants. Acta Cryst F62:1286–1289Google Scholar
  22. Ruppert M, Ma X, Stöckigt J (2005a) Alkaloid biosynthesis in Rauvolfia—cDNA cloning of major enzymes of the ajmaline pathway. Curr Org Chem 9:1431–1444CrossRefGoogle Scholar
  23. Ruppert M, Woll J, Giritch A, Genady E, Ma X, Stöckigt J (2005b) Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system. Planta 222:888–898PubMedCrossRefGoogle Scholar
  24. Sabino JR, Kato L, Braga RM, Vencato I (2006) Raucaffrinoline. Acta Cryst E62:o3181–o3183Google Scholar
  25. Sheludko Y, Gerasimenko I, Kolshorn H, Stöckigt J (2002) New alkaloids of the sarpagine group from Rauvolfia serpentina hairy root cultures. J Nat Prod 65:1006–1010PubMedCrossRefGoogle Scholar
  26. Stöckigt J (1995) Biosynthesis in Rauvolfia serpentina, modern aspects of an old medicinal plant. In: Cordell GA (ed) The alkaloids, vol 47. Academic Press, San Diego, pp 115–172Google Scholar
  27. Subhadhirasakul S, Takayama H, Aimi N, Ponglux D, Sakai SI (1994) Novel indole alkaloids from the leaves of Rauwolfia sumatrana JACK in Thailand. Chem Pharm Bull 42:1427–1431Google Scholar
  28. Unterlinner B, Lenz R, Kutchan TM (1999) Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum. Plant J 18:465–475PubMedCrossRefGoogle Scholar
  29. Warzecha H, Obitz P, Stöckigt J (1999) Purification, partial amino acid sequence and structure of the product of raucaffrine-O-ß-d-glucosidase from plant cell cultures of Rauwolfia serpentina. Phytochemistry 50:1099–1109PubMedCrossRefGoogle Scholar
  30. Zenk MH (1995) Chasing the enzymes of alkaloid biosynthesis. In: Golding BT, Griffin RJ, Maskill H (eds) Organic reactivity: physical and biological aspects. The Royal Society of Chemistry, Newcastle upon Thyne, pp 89–109Google Scholar
  31. Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L, Zeng D, Gu M, Chu C, Cheng Z (2006) Gold hull and internode2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiol 140:972–983PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Lianli Sun
    • 1
    • 2
  • Martin Ruppert
    • 2
  • Yuri Sheludko
    • 3
  • Heribert Warzecha
    • 4
  • Yu Zhao
    • 1
  • Joachim Stöckigt
    • 1
    • 2
  1. 1.College of Pharmaceutical Sciences, Department of Traditional Chinese Medicine and Natural Drug Research, Building of College of Pharmaceutical Sciences, Zijingang CampusZhejiang UniversityHangzhouP.R. China
  2. 2.Institute of Pharmacy, Department of Pharmaceutical BiologyJohannes Gutenberg-University MainzMainzGermany
  3. 3.Institute of Cell Biology and Genetic EngineeringNational Academy of Science of UkraineKyivUkraine
  4. 4.Institute of Botany, Plant Biotechnology and Metabolic EngineeringDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations