Skip to main content
Log in

Thiamin pyrophosphokinase is required for thiamin cofactor activation in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Thiamin pyrophosphate (TPP) is an essential enzyme cofactor required for the viability of all organisms. Whether derived from exogenous sources or through de novo synthesis, thiamin must be pyrophosphorylated for cofactor activation. The enzyme thiamin pyrophosphokinase (TPK) catalyzes the conversion of free thiamin to TPP in plants and other eukaryotic organisms and is central to thiamin cofactor activation. While TPK activity has been observed in a number of plant species, the corresponding gene/protein has until now not been identified or characterized for its role in thiamin metabolism. Here we report the functional identification of two Arabidopsis TPK genes, AtTPK1 and AtTPK2 and the enzymatic characterization of the corresponding proteins. AtTPK1 and AtTPK2 are biochemically redundant cytosolic proteins that are similarly expressed throughout different plant tissues. The essential nature of TPKs in plant metabolism is reflected in the observation that while single gene knockouts of either AtTPK1 or AtTPK2 were viable, the double mutant possessed a seedling lethal phenotype. HPLC analysis revealed the double mutant is nearly devoid of TPP and instead accumulates the precursor of the TPK reaction, free thiamin. These results suggest that TPK activity provides the sole mechanism by which exogenous and de novo derived thiamin is converted to the enzyme cofactor TPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TPK:

Thiamin pyrophosphokinase

AtTPK1 :

Arabidopsis thaliana TPK locus At1g02880

AtTPK2 :

Arabidopsis thaliana TPK locus At2g44750

AtTPK1:

Arabidopsis thaliana TPK protein 1 corresponding to the AtTPK1 locus

AtTPK2:

Arabidopsis thaliana TPK protein 2 corresponding to the AtTPK2 locus

AtTPK1-KO :

T-DNA insertion mutant line SALK_010916 corresponding to AtTPK1

AtTPK2-KO :

T-DNA insertion mutant line SALK_011765 corresponding to AtTPK2

AtTPK1/2-KO:

AtTPK1 and AtTPK2 double knockout

TMP:

Thiamin monophosphate

TPP:

Thiamin pyrophosphate

References

  • Ajjawi I, Tsegaye Y, Shintani D (2007) Determination of the genetic, molecular, and biochemical basis of the Arabidopsis thaliana thiamin auxotroph th1. Arch Biochem Biophys 459:107–114

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Baker LJ, Dorocke JA, Harris RA, Timm DE (2001) The crystal structure of yeast thiamin pyrophosphokinase. Structure 9:539–546

    Article  PubMed  CAS  Google Scholar 

  • Barile M, Passarella S, Quagliariello E (1986) Uptake of thiamin by isolated rat liver mitochondria. Biochem Biophys Res Commun 141:466–473

    Article  PubMed  CAS  Google Scholar 

  • Barile M, Passarella S, Quagliariello E (1990) Thiamine pyrophosphate uptake into isolated rat liver mitochondria. Arch Biochem Biophys 280:352–357

    Article  PubMed  CAS  Google Scholar 

  • Bettendorff L (1995) Thiamine homeostasis in neuroblastoma cells. Neurochem Int 26:295–302

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  PubMed  CAS  Google Scholar 

  • Casneuf T, De Bodt S, Raes J, Maere S, Van de Peer Y (2006) Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana. Genome Biol 7:R13

    Article  PubMed  CAS  Google Scholar 

  • Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  PubMed  CAS  Google Scholar 

  • de Jong L, Meng Y, Dent J, Hekimi S (2004) Thiamine pyrophosphate biosynthesis and transport in the nematode Caenorhabditis elegans. Genetics 168:845–854

    Article  PubMed  CAS  Google Scholar 

  • Deus B, Blum H (1970) Subcellular distribution of thiamine pyrophosphokinase activity in rat liver and erythrocytes. Biochim Biophys Acta 219:489–492

    Article  PubMed  CAS  Google Scholar 

  • Dietrich C, Maiss E (2002) Red fluorescent protein DsRed from Discosoma sp. as a reporter protein in higher plants. Biotechniques 32:286, 288–290, 292–293

    Google Scholar 

  • Haberer G, Hindemitt T, Meyers BC, Mayer KF (2004) Transcriptional similarities, dissimilarities, and conservation of cis-elements in duplicated genes of Arabidopsis. Plant Physiol 136:3009–3022

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1938) The water culture method for growing plants without soil. University of California, College of Agriculture, Agricultural Experiment Station Circular 347

  • Hohmann S, Meacock PA (1998) Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Biochim Biophys Acta 1385:201–219

    PubMed  CAS  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Nakai K (2006) Protein Subcellular Localization Prediction with WoLF PSORT. Proceedings of the 4th Annual Asia Pacific Bioinformatics Conference APBC06, Taipei, Taiwan, pp 39–48

  • Imamura N, Nakayama H (1982) thiK and thiL loci of Escherichia coli. J Bacteriol 151:708–717

    PubMed  CAS  Google Scholar 

  • Jach G, Binot E, Frings S, Luxa K, Schell J (2001) Use of red fluorescent protein from Discosoma sp. (dsRED) as a reporter for plant gene expression. Plant J 28:483–491

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  PubMed  CAS  Google Scholar 

  • Kern D, Kern G, Neef H, Tittmann K, Killenberg-Jabs M, Wikner C, Schneider G, Hubner G (1997) How thiamine diphosphate is activated in enzymes. Science 275:67–70

    Article  PubMed  CAS  Google Scholar 

  • Kohler RH, Zipfel WR, Webb WW, Hanson MR (1997) The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J 11:613–621

    Article  PubMed  CAS  Google Scholar 

  • Li SL, Redei GP (1969) Thiamine mutants of the crucifer, Arabidopsis. Biochem Genet 3:163–170

    Article  PubMed  CAS  Google Scholar 

  • Lynch PL, Young IS (2000) Determination of thiamine by high-performance liquid chromatography. J Chromatogr A 881:267–284

    Article  PubMed  CAS  Google Scholar 

  • Machado CR, Praekelt UM, de Oliveira RC, Barbosa AC, Byrne KL, Meacock PA, Menck CF (1997) Dual role for the yeast THI4 gene in thiamine biosynthesis and DNA damage tolerance. J Mol Biol 273:114–121

    Article  PubMed  CAS  Google Scholar 

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331

    Article  PubMed  CAS  Google Scholar 

  • Marobbio CM, Vozza A, Harding M, Bisaccia F, Palmieri F, Walker JE (2002) Identification and reconstitution of the yeast mitochondrial transporter for thiamine pyrophosphate. EMBO J 21:5653–5661

    Article  PubMed  CAS  Google Scholar 

  • Melnick J, Lis E, Park JH, Kinsland C, Mori H, Baba T, Perkins J, Schyns G, Vassieva O, Osterman A, Begley TP (2004) Identification of the two missing bacterial genes involved in thiamine salvage: thiamine pyrophosphokinase and thiamine kinase. J Bacteriol 186:3660–3662

    Article  PubMed  CAS  Google Scholar 

  • Milla MA, Townsend J, Chang IF, Cushman JC (2006) The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways. Plant Mol Biol 61:13–30

    Article  PubMed  CAS  Google Scholar 

  • Mitsuda H, Takii Y, Iwami K, Yasumoto K, Nakajima K (1979) Enzymatic formation of thiamine pyrophosphate in plants. Methods Enzymol 62:107–111

    PubMed  CAS  Google Scholar 

  • Mitsuda H, Tanaka T, Takii Y, Kawai F (1970) Biosynthesis of thiamine in plants. II. Biosynthetic pathway of thiamine monophosphate from pyrimidine and thiazole moieties. J Vitaminol (Kyoto) 17:89–95

    CAS  Google Scholar 

  • Molin WT, Fites RC (1980) Isolation and characterization of thiamin pyrophosphotransferase from glycine max seedlings. Plant Physiol 66:308–312

    PubMed  CAS  Google Scholar 

  • Molin WT, Wilkerson CG, Fites RC (1980) Thiamin phosphorylation by thiamin pyrophosphotransferase during seed germination. Plant Physiol 66:313–315

    Article  PubMed  CAS  Google Scholar 

  • Mozafar A, Oertli JJ (1992) Uptake and transport of thiamin (Vitamin b1) by barley and soybean. J Plant Physiol 139:436–442

    CAS  Google Scholar 

  • Mozafar A, Oertli JJ (1993) Thiamin ( vitamin B1): translocation and metabolism by soybean seedling. J Plant Physiol 142:438–445

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    Article  PubMed  CAS  Google Scholar 

  • Nosaka K, Kaneko Y, Nishimura H, Iwashima A (1993) Isolation and characterization of a thiamin pyrophosphokinase gene, THI80, from Saccharomyces cerevisiae. J Biol Chem 268:17440–17447

    PubMed  CAS  Google Scholar 

  • Nosaka K, Onozuka M, Kakazu N, Hibi S, Nishimura H, Nishino H, Abe T (2001) Isolation and characterization of a human thiamine pyrophosphokinase cDNA. Biochim Biophys Acta 1517:293–297

    PubMed  CAS  Google Scholar 

  • Nosaka K, Onozuka M, Nishino H, Nishimura H, Kawasaki Y, Ueyama H (1999) Molecular cloning and expression of a mouse thiamin pyrophosphokinase cDNA. J Biol Chem 274:34129–34133

    Article  PubMed  CAS  Google Scholar 

  • Onozuka M, Nosaka K (2003) Steady-state kinetics and mutational studies of recombinant human thiamin pyrophosphokinase. J Nutr Sci Vitaminol (Tokyo) 49:156–162

    CAS  Google Scholar 

  • Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005

    Article  PubMed  CAS  Google Scholar 

  • Schellenberger A (1998) Sixty years of thiamin diphosphate biochemistry. Biochim Biophys Acta 1385:177–186

    PubMed  CAS  Google Scholar 

  • Sheen, J (2002) A transient expression assay using Arabidopsis mesophyll protoplasts. http://genetics.mgh.harvard.edu/sheenweb/

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Timm DE, Liu J, Baker LJ, Harris RA (2001) Crystal structure of thiamin pyrophosphokinase. J Mol Biol 310:195–204

    Article  PubMed  CAS  Google Scholar 

  • Voskoboev AI, Averin VA (1981) Free and bound thiamine pyrophosphate level in rat liver mitochondria in various saturation of the body with thiamine. Vopr Med Khim 27:239–243

    PubMed  CAS  Google Scholar 

  • Wakabayashi Y, Iwashima A, Nose Y (1979) Affinity chromatography of thiamine pyrophosphokinase from rat brain on thiamine monophosphate-agarose. Methods Enzymol 62:105–107

    Article  PubMed  CAS  Google Scholar 

  • Walbot V (2000) Arabidopsis thaliana genome. A green chapter in the book of life. Nature 408:794–795

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K (1984) Some properties of the thiamine uptake system in isolated rat hepatocytes. Biochim Biophys Acta 778:201–209

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Jen Sheen (Massachusetts General Hospital, Boston, MA) for providing p35s-sGFP-TYG-NOS and Dr Maureen Hanson (Cornell University, Ithaca, NY) for providing p35s35sAMV-coxIV-S65TmGFP4-NOS. We would also like to thank Katrina Meeth for technical support. We would also like to thank Drs Christie Howard, Jeff Harper and the members of the Shintani Lab for their constructive criticism. This work was supported by the National Science Foundation grant no. MCB-0236210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Shintani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajjawi, I., Rodriguez Milla, M.A., Cushman, J. et al. Thiamin pyrophosphokinase is required for thiamin cofactor activation in Arabidopsis. Plant Mol Biol 65, 151–162 (2007). https://doi.org/10.1007/s11103-007-9205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9205-4

Keywords

Navigation