Skip to main content

Advertisement

Log in

The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Pathogens induce the expression of many genes encoding plant transcription factors, though specific knowledge of the biological function of individual transcription factors remains scarce. NAC transcription factors are encoded in plants by a gene family with proposed functions in both abiotic and biotic stress adaptation, as well as in developmental processes. In this paper, we provide convincing evidence that a barley NAC transcription factor has a direct role in regulating basal defence. The gene transcript was isolated by differential display from barley leaves infected with the biotrophic powdery mildew fungus, Blumeria graminis f.sp. hordei (Bgh). The full-length cDNA clone was obtained using 5′-RACE and termed HvNAC6, due to its high similarity to the rice homologue, OsNAC6. Gene silencing of HvNAC6 during Bgh inoculation compromises penetration resistance in barley epidermal cells towards virulent Bgh. Complementing the effect of HvNAC6 gene silencing, transient overexpression of HvNAC6 increases the occurrence of penetration resistant cells towards Bgh attack. Quantitative RT-PCR shows the early and transient induction of HvNAC6 in barley epidermis upon Bgh infection. Additionally, our results show that the Arabidopsis HvNAC6 homologue ATAF1 is also induced by Bgh and the ataf1-1 mutant line shows decreased penetration resistance to this non-host pathogen. Collectively, these data suggest a conserved role of HvNAC6 and ATAF1 in the regulation of penetration resistance in monocots and dicots, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

Bgh :

Blumeria graminis f.sp. hordei

Bp:

Base pair

EST:

Expressed sequence tag

GFP:

Green fluorescence protein

HR:

Hypersensitive response

Hv :

Hordeum vulgare

NAC:

NAM, ATAF1;2, CUC2

PGT:

Primary germ tube

RACE:

Rapid amplification of cDNA ends

RNAi:

RNA interference

UTR:

Untranslated region

X-GAL:

β-d-galactopyranoside

References

  • Aida M et al (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9(6):841–857

    Article  PubMed  CAS  Google Scholar 

  • Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126(8):1563–1570

    PubMed  CAS  Google Scholar 

  • Aist JR, Bushnell WR (1991) Invasion of plants by powdery mildew fungi, and cellular mechanisms of resistance. In: Cole GT, Hoch HC (eds) The spore and disease initiation in plants and animals. Plenum Press, New York, pp 321–345

    Google Scholar 

  • Alonso JM et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301(5633):653–657

    Article  PubMed  Google Scholar 

  • Anderson JP et al (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16(12):3460–3479

    Article  PubMed  CAS  Google Scholar 

  • Assaad FF et al (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 15(11):5118–5129

    Article  PubMed  CAS  Google Scholar 

  • Bedini E et al (2005) Structure-dependent modulation of a pathogen response in plants by synthetic O-antigen polysaccharides. J Am Chem Soc 127(8):2414–2416

    Article  PubMed  CAS  Google Scholar 

  • Boyes DC et al (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13(7):1499–1510

    Article  PubMed  CAS  Google Scholar 

  • Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16(9):2514–2528

    Article  PubMed  CAS  Google Scholar 

  • Carver TLW, Ingerson MS (1987) Responses of Erysiphe graminis germlings to contact with artificial and host surfaces. Physiol Mol Plant Pathol 30:359–372

    Article  Google Scholar 

  • Carver TLW et al (1995) Early interactions during powdery mildew infection. Can J Bot 73:S632–S639

    Article  Google Scholar 

  • Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46(5):521–529

    Article  PubMed  CAS  Google Scholar 

  • Collins NC et al (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425(6961):973–977

    Article  PubMed  CAS  Google Scholar 

  • Delessert C et al (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43(5):745–757

    Article  PubMed  CAS  Google Scholar 

  • Dong W, Nowara D, Schweizer P (2006) Protein polyubiquitination plays a role in basal host resistance of barley. Plant Cell 18(11):3321–3331

    Article  PubMed  CAS  Google Scholar 

  • Douchkov D et al (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol Plant Microbe Interact 18(8):755–761

    Article  PubMed  CAS  Google Scholar 

  • Edwards HH (1983) Effect of kinetin, abscisic acid and cations on host-parasite relation of barley inoculated with Erysiphe graminis f.sp. hordei. J Phytopathol 107:22–30.

    CAS  Google Scholar 

  • Ernst HA et al (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5(3):297–303

    Article  PubMed  CAS  Google Scholar 

  • Felle HH et al (2004) Apoplastic pH signaling in barley leaves attacked by the powdery mildew fungus Blumeria graminis f.sp. hordei. Mol Plant Microbe Interact 17(1):118–123

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR (2006) Studies of abscisic acid perception finally flower. Plant Cell 18(4):786–791

    Article  PubMed  CAS  Google Scholar 

  • Freialdenhoven A et al (1996) Identification of genes required for the function of non-race-specific mlo resistance to powdery mildew in barley. Plant Cell 8(1):5–14

    Article  PubMed  CAS  Google Scholar 

  • Fujita M et al (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442

    Article  PubMed  Google Scholar 

  • Gjetting T et al (2004) Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells. Mol Plant Microbe Interact 17(7):729–738

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Gong W et al (2004) Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes. Plant Physiol 135(2):773–782

    Article  PubMed  CAS  Google Scholar 

  • Govrin EM, Levine A (2002) Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR). Plant Mol Biol 48(3):267–276

    Article  PubMed  CAS  Google Scholar 

  • Green JR, Carver TLW, Gurr SJ (2002) The formation and function of infection and feeding structures. In: Bélanger R et al (eds) The powdery mildews: a comprehensive treatise. APS Press, St. Paul, pp 66–82

    Google Scholar 

  • Gregersen PL, Collinge DB (2001) Penetration attempts by the powdery mildew fungus into barley leaves are accompanied by increased gene transcript accumultation in the epidermal cell layer. J Plant Pathology 82:257–260

    Google Scholar 

  • Gregersen PL et al (1997) Differential gene transcript accumulation in barley leaf epidermis and mesophyll in response to attack by Blumeria graminis f.sp. hordei. Physiol Mol Plant Pathol 51:85–97

    Article  CAS  Google Scholar 

  • Hegedus D et al (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53(3):383–397

    Article  PubMed  CAS  Google Scholar 

  • Hu H et al (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103(35):12987–12992

    Article  PubMed  CAS  Google Scholar 

  • Huckelhoven R et al (1999) Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol 119(4):1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen JH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152

    Article  Google Scholar 

  • Kikuchi K et al (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet 262(6):1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Delaney TP (2002) Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J 32(2):151–163

    Article  PubMed  CAS  Google Scholar 

  • Koga H, Bushnell WR, Zeyen RJ (1990) Specificity of cell type and timing of events associated with papilla formation and the hypersensitive reaction in leaves of Hordeum vulgare attacked by Erysiphe graminis f.sp hordei. Can J Bot 68:2344–2352

    Google Scholar 

  • Kølster P et al (1986) Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Sci 26:903–907

    Article  Google Scholar 

  • Li J et al (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46(3):477–491

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Pardee AB (1997) Differential display. A general protocol. Methods Mol Biol 85:3–11

    PubMed  CAS  Google Scholar 

  • Lipka V et al (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310(5751):1180–1183

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O et al (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16(7):1938–1950

    Article  PubMed  CAS  Google Scholar 

  • Lu PL et al (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63(2):289–305

    Article  PubMed  CAS  Google Scholar 

  • McGrath KC et al (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139(2):949–959

    Article  PubMed  CAS  Google Scholar 

  • Mellersh DG, Heath MC (2001) Plasma membrane-cell wall adhesion is required for expression of plant defense responses during fungal penetration. Plant Cell 13(2):413–424

    Article  PubMed  CAS  Google Scholar 

  • Nielsen K, Olsen O, Oliver R (1999) A transient expression system to assay putative antifungal genes on powdery mildew infected barley leaves. Physiol Mol Plant Pathol 54:1–12

    Article  CAS  Google Scholar 

  • Ohnishi T et al (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst 80(2):135–139

    Article  PubMed  CAS  Google Scholar 

  • Ooka H et al (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10(6):239–247

    Article  PubMed  CAS  Google Scholar 

  • Panstruga R (2004) A golden shot: how ballistic single cell transformation boosts the molecular analysis of cereal-powdery mildew interactions. Mol Plant Pathol 5(2):141–148

    Article  CAS  PubMed  Google Scholar 

  • Perrière G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  • Prats E et al (2006a) Induced inaccessibility and accessibility in the oat powdery mildew system: insights gained from use of metabolic inhibitors and silicon nutrition. Mol Plant Pathol 7(1):47–59

    Article  CAS  PubMed  Google Scholar 

  • Prats E et al (2006b) Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis. J Exp Bot 57(10):2211–2226

    Article  PubMed  CAS  Google Scholar 

  • Robertson M (2004) Two transcription factors are negative regulators of gibberellin response in the HvSPY-signaling pathway in barley aleurone. Plant Physiol 136(1):2747–2761

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM et al (2003) Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol 132(2):999–1010

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Lefert P, Panstruga R (2003) Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41:641–667

    Article  PubMed  CAS  Google Scholar 

  • Schweizer P et al (1999) A transient assay system for the functional assessment of defense-related genes in wheat. Mol Plant–Microbe Interact 12:647–654

    Article  CAS  Google Scholar 

  • Selth LA et al (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17(1):311–325

    Article  PubMed  CAS  Google Scholar 

  • Shen QH et al (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315(5815):1098–1103

    Article  PubMed  CAS  Google Scholar 

  • Souer E et al (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85(2):159–170

    Article  PubMed  CAS  Google Scholar 

  • Sun C et al (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15(9):2076–2092

    Article  PubMed  CAS  Google Scholar 

  • Takada S et al (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128(7):1127–1135

    PubMed  CAS  Google Scholar 

  • Thompson JD et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen H (2003) Fresh insights into processes of nonhost resistance. Curr Opin Plant Biol 6(4):351–357

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen H, Smedegaard-Petersen V (1988) Correlation between induced resistance and host fluorescence in barley inoculated with Erysiphe graminis. J Phytopathol 123:34–46

    Google Scholar 

  • Trujillo M, Kogel KH, Huckelhoven R (2004) Superoxide and hydrogen peroxide play different roles in the nonhost interaction of barley and wheat with inappropriate formae speciales of Blumeria graminis. Mol Plant Microbe Interact 17(3):304–312

    Article  PubMed  CAS  Google Scholar 

  • Varagona MJ, Schmidt RJ, Raikhel NV (1992) Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell 4(10):1213–1227

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (1997) Xylem Sap pH Increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol 113(2):559–573

    PubMed  CAS  Google Scholar 

  • Xie Q et al (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14(23):3024–3036

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y et al (2005) Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 59(1):191–203

    Article  PubMed  CAS  Google Scholar 

  • Zeyen RJ, Bushnell WR (1977) Papillae response of barley epidermal cells caused by Erysiphe graminis: rate and method of deposition determined by microcinematography and transmission electron microscopy. Can J Bot 57:898–913

    Google Scholar 

  • Zierold U, Scholz U, Schweizer P (2005) Transcriptome analysis of mlo-mediated resistance in the epidermis of barley. Mol Plant Pathol 6:139–152

    Article  CAS  PubMed  Google Scholar 

  • Zimmerli L et al (2004) Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J 40(5):633–646

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Drs Patrick Schweizer and Dimitar Doutchkov for the empty and HvSNAP34 overexpression pIPKA9 vectors, Michael Næsby for optimisation of RACE amplification procedure, NASC for providing the T-DNA insertion line, and Hans Thordal-Christensen for fruitful discussions and for reading the manuscript. MKJ was supported by a PhD scholarship from the University of Copenhagen, Faculty of Life Sciences (formerly the Royal Veterinary and Agricultural University) and research financed by a Danish Research Council grant “Cell specific analysis of host-plant responses to pathogens using a functional genomic approach” SJVF 23-03-0167 (to MFL and DBC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Collinge.

Additional information

Seed stocks: Arabidopsis thaliana, ecotype Columbia-0 and NASC T-DNA-line SALK_067648.

Electronic supplementary material

Below are the electronic supplementary materials

11103_2007_9204_MOESM1_ESM.pdf

11103_2007_9204_MOESM2_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, M.K., Rung, J.H., Gregersen, P.L. et al. The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis . Plant Mol Biol 65, 137–150 (2007). https://doi.org/10.1007/s11103-007-9204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9204-5

Keywords

Accession numbers

Navigation