Plant Molecular Biology

, Volume 64, Issue 3, pp 225–240 | Cite as

Functional analysis of Arabidopsis genes involved in mitochondrial iron–sulfur cluster assembly

  • Ana Paula Guedes Frazzon
  • Melissa V. Ramirez
  • Ujwala Warek
  • Janneke Balk
  • Jeverson Frazzon
  • Dennis R. Dean
  • Brenda S. J. Winkel


Machinery for the assembly of the iron–sulfur ([Fe–S]) clusters that function as cofactors in a wide variety of proteins has been identified in microbes, insects, and animals. Homologs of the genes involved in [Fe–S] cluster biogenesis have recently been found in plants, as well, and point to the existence of two distinct systems in these organisms, one located in plastids and one in mitochondria. Here we present the first biochemical confirmation of the activity of two components of the mitochondrial machinery in Arabidopsis, AtNFS1 and AtISU1. Analysis of the expression patterns of the corresponding genes, as well as AtISU2 and AtISU3, and the phenotypes of plants in which these genes are up or down-regulated are consistent with a role for the mitochondrial [Fe–S] assembly system in the maturation of proteins required for normal plant development.


Cysteine desulfurase activity [Fe–S] Cluster assembly Intracellular localization Mitochondria Transgenic plants 



Aldehyde oxidase


Bacterial artificial chromosome


Cauliflower mosaic virus


Confocal laser scanning microscopy


Expressed sequence tag




Green fluorescent protein




Iron sulfur cluster


Molybdenum co-factor


Nopaline synthase


Non-photochemical quenching


Photosystem I


Photosystem II


Polymerase chain reaction


Pyridoxal 5′-phosphate


Photochemical quenching


Quantum yield


Reverse transcriptase PCR


Tobacco Etch Virus




Wild type



This work was supported by a seed grant from the Virginia Tech ASPIRES program to BSJW and DRD and by National Science Foundation grant MCB-021138 to DRD. JB is funded by the Royal Society UK. The authors are grateful to Deborah Johnson for insightful comments on the manuscript. They thank Kristi DeCourcy for providing expertise in confocal microscopy, Jonathan Horton for assistance with chlorophyll fluorescence measurements, and Florian Bittner and Ralf Mendel for suggesting the AO activity assays and providing the assay protocol. They are also indebted to Jim Haseloff for providing Arabidopsis plants transformed with pBIN m-gfp5-ER, Bonnie Woffenden, John McDowell, and John Jelesko for the gift of the pBW18 vector and Act2 primers, Eric Beers for mpBI121, and to the Arabidopsis Biological Resource Center for providing numerous clones (F6H11, K3F7TP, pUNI51 U10851, pUNI51 U12070, pENTR221–At3g01020, and pENTR221–At4g04080) and T-DNA lines (SALK_041918, SALK_083681, and SALK_006332).


  1. Agar JN, Krebs C, Frazzon J, Huyhn BH, Dean DR, Johnson MK (2000) IscU as a scaffold for iron–sulfur cluster biosynthesis: sequential assembly of [2Fe–2S] and [4Fe–4S] cluster in IscU. Biochemistry 39:7856–7862PubMedCrossRefGoogle Scholar
  2. Ali V, Shigeta Y, Tokumoto U, Takahashi Y, Nozaki T (2004) An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron-sulfur cluster assembly under anaerobic conditions. J Biol Chem 279:16863–16874PubMedCrossRefGoogle Scholar
  3. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657PubMedCrossRefGoogle Scholar
  4. Amrani L, Primus J, Glatigny A, Arcangeli L, Scazzocchio C, Finnerty V (2000) Comparison of the sequences of the Aspergillus nidulans hxB and Drosophila melanogaster ma-l genes with nifS from Azotobacter vinelandii suggests a mechanism for the insertion of the terminal sulphur atom in the molybdopterin cofactor. Mol Microbiol 38:114–125PubMedCrossRefGoogle Scholar
  5. Balk J, Lobréaux S (2005) Biogenesis of iron–sulfur proteins in plants. Trends Plant Sci 10:324–331PubMedCrossRefGoogle Scholar
  6. Becker D (1990) Binary vectors which allow the exchange of plant selectable markers and reporter genes. Nucleic Acids Res 18:203PubMedCrossRefGoogle Scholar
  7. Beinert H (2000) Iron–sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5:2–15PubMedCrossRefGoogle Scholar
  8. Bittner F, Oreb M, Mendel RR (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276:40381–40384PubMedCrossRefGoogle Scholar
  9. Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16:664–668, 670PubMedGoogle Scholar
  10. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  11. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349PubMedCrossRefGoogle Scholar
  12. Flint DH (1996) Escherichia coli contains a protein that is homologous in function and N-terminal sequence to the protein encoded by the nifS gene of Azotobacter vinelandii and that can participate in the synthesis of the Fe–S cluster of dihydroxy-acid dehydratase. J Biol Chem 271:16068–16074PubMedGoogle Scholar
  13. Gornall A, Bardawill C, David M (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766Google Scholar
  14. Heidenreich T, Wollers S, Mendel RR, Bittner F (2005) Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J Biol Chem 280:4213–4218PubMedCrossRefGoogle Scholar
  15. Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652PubMedCrossRefGoogle Scholar
  16. Imsande J (1999) Iron–sulfur clusters: formation, perturbation, and physiological functions. Plant Physiol Biochem 37:87–97CrossRefGoogle Scholar
  17. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron–sulfur clusters. Annu Rev Biochem 74:247–281PubMedCrossRefGoogle Scholar
  18. Kessler D, Papenbrock J (2005) Iron–sulfur cluster biosynthesis in photosynthetic organisms. Photosynth Res 86:391–407PubMedCrossRefGoogle Scholar
  19. Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G, Lill R, Van Montagu M (2001) A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89–100PubMedCrossRefGoogle Scholar
  20. Lacourciere GM, Mihara H, Kurihara T, Esaki N, Stadtman TC (2000) Escherichia coli NifS-like proteins provide selenium in the pathway for the biosynthesis of selenophosphate. J Biol Chem 275:23769–23773PubMedCrossRefGoogle Scholar
  21. Land T, Rouault TA (1988) Targeting of a human iron–sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol Cell 2:807–815CrossRefGoogle Scholar
  22. Léon S, Touraine B, Briat JF, Lobréaux S (2005) Mitochondrial localization of Arabidopsis thaliana Isu Fe–S scaffold proteins. FEBS Lett 579:1930–1934PubMedCrossRefGoogle Scholar
  23. Léon S, Touraine B, Ribot C, Briat J-F, Lobréaux S (2003) Iron–sulfur cluster assembly in plants: distinct NFU proteins in mitochondria and plastids from Arabidopsis thaliana. Biochem J 371:823–830PubMedCrossRefGoogle Scholar
  24. Lill R, Mühlenhoff U (2005) Iron–sulfur-protein biogenesis in eukaryotes. Trends Biochem Sci 30:133–141PubMedCrossRefGoogle Scholar
  25. Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F (2003) Biogenesis of Fe–S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J Biol Chem 278:38352–38359PubMedCrossRefGoogle Scholar
  26. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668PubMedCrossRefGoogle Scholar
  27. Mendel RR, Bittner F (2006) Cell biology of molybdenum. Biochim Biophys Acta 1763:621–635PubMedCrossRefGoogle Scholar
  28. Mihara H, Kato S, Lacourciere GM, Stadtman TC, Kennedy RA, Kurihara T, Tokumoto U, Takahashi Y, Esaki N (2002) The iscS gene is essential for the biosynthesis of 2-selenouridine in tRNA and the selenocysteine-containing formate dehydrogenase H. Proc Natl Acad Sci USA 99:6679–6683PubMedCrossRefGoogle Scholar
  29. Nachin L, El Hassouni M, Loiseau L, Expert D, Barras F (2001) SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase. Mol Microbiol 39:960–972PubMedCrossRefGoogle Scholar
  30. Nakai Y, Umeda N, Suzuki T, Nakai M, Hayashi H, Watanabe K, Kagamiyama H (2004) Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. J Biol Chem 279:12363–12368PubMedCrossRefGoogle Scholar
  31. Nishio K, Nakai M (2000) Transfer of iron–sulfur cluster from NifU to apoferredoxin. J Biol Chem 275:22615–22618PubMedCrossRefGoogle Scholar
  32. Olson JW, Agar JN, Johnson MK, Maier RJ (2000) Characterization of the NifU and NifS Fe–S cluster formation proteins essential for viability in Helicobacter pylori. Biochemistry 39:16213–16219PubMedCrossRefGoogle Scholar
  33. Outten FW, Wood MJ, Munoz FM, Storz G (2003) The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem 278:45713–45719PubMedCrossRefGoogle Scholar
  34. Pelletier MK, Burbulis IE, Shirley BW (1999) Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and endproducts in Arabidopsis seedlings. Plant Mol Biol 40:45–54PubMedCrossRefGoogle Scholar
  35. Pfannschmidt T, Nilsson A, Tullberg A, Link G, Allen JF (1999) Direct transcriptional control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy distribution in plants. IUBMB Life 48:271–276PubMedGoogle Scholar
  36. Picciocchi A, Douce R, Alban C (2003) The plant biotin synthase reaction. Identification and characterization of essential mitochondrial accessory protein components. J Biol Chem 278:24966–24975PubMedCrossRefGoogle Scholar
  37. Pilon-Smits EA, Garifullina GF, Abdel-Ghany S, Kato S, Mihara H, Hale KL, Burkhead JL, Esaki N, Kurihara T, Pilon M (2002) Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism. Plant Physiol 130:1309–1318PubMedCrossRefGoogle Scholar
  38. Pilon M, Abdel-Ghany SE, Van Hoewyk D, Ye H, Pilon-Smits EA (2006) Biogenesis of iron–sulfur cluster proteins in plastids. Genet Eng (NY) 27:101–117CrossRefGoogle Scholar
  39. Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8:546–553PubMedCrossRefGoogle Scholar
  40. Rouault TA, Tong WH (2005) Iron–sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 6:345–351PubMedCrossRefGoogle Scholar
  41. Sagi M, Scazzocchio C, Fluhr R (2002) The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. Plant J 31:305–317PubMedCrossRefGoogle Scholar
  42. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506PubMedCrossRefGoogle Scholar
  43. Scott A, Wyatt S, Tsou PL, Robertson D, Allen NS (1999) Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques 26:1125, 1128–1132Google Scholar
  44. Seo M, Aoki H, Koiwai H, Kamiya Y, Nambara E, Koshiba T (2004) Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol 45:1694–1703PubMedCrossRefGoogle Scholar
  45. Sieburth LE, Meyerowitz EM (1997) Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9:355–365PubMedCrossRefGoogle Scholar
  46. Simon AE, Li XH, Lew JE, Stange R, Zhang C, Polacco M, Carpenter CD (1992) Susceptibility and resistance of Arabidopsis thaliana to Turnip Crinkle Virus. Mol Plant-Microbe Interact 5:496–503Google Scholar
  47. Stadtman T (2004) Methanococcus vannielii selenium metabolism: purification and N-terminal amino acid sequences of a novel selenium-binding protein and selenocysteine lyase. IUBMB Life 56:427–431PubMedGoogle Scholar
  48. Tong WH, Rouault T (2000) Distinct iron–sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J 19:5692–5700PubMedCrossRefGoogle Scholar
  49. Tong WH, Rouault TA (2006) Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron–sulfur cluster biogenesis and iron homeostasis. Cell Metab 3:199–210PubMedCrossRefGoogle Scholar
  50. Touraine B, Boutin JP, Marion-Poll A, Briat JF, Peltier G, Lobréaux S (2004) Nfu2: a scaffold protein required for [4Fe–4S] and ferredoxin iron–sulphur cluster assembly in Arabidopsis chloroplasts. Plant J 40:101–111PubMedCrossRefGoogle Scholar
  51. Van Hoewyk D, Garifullina GF, Ackley AR, Abdel-Ghany SE, Marcus MA, Fakra S, Ishiyama K, Inoue E, Pilon M, Takahashi H, Pilon-Smits EA (2005) Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiol 139:1518–1528PubMedCrossRefGoogle Scholar
  52. Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inze D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821PubMedCrossRefGoogle Scholar
  53. von Arnim AG, Deng XW, Stacey MG (1998) Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene 221:35–43CrossRefGoogle Scholar
  54. Watson JC, Thompson WF (1986) Purification and restriction endonuclease analysis of plant nuclear DNA. Methods Enzymol 118:57–75CrossRefGoogle Scholar
  55. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590PubMedCrossRefGoogle Scholar
  56. Xu XM, Møller SG (2006) AtSufE is an essential activator of plastidic and mitochondrial desulfurases in Arabidopsis. EMBO J 25:900–909PubMedCrossRefGoogle Scholar
  57. Yabe T, Morimoto K, Kikuchi S, Nishio K, Terashima I, Nakai M (2004) The Arabidopsis chloroplastic NifU-like protein CnfU, which can act as an iron–sulfur cluster scaffold protein, is required for biogenesis of ferredoxin and photosystem I. Plant Cell 16:993–1007PubMedCrossRefGoogle Scholar
  58. Ye H, Abdel-Ghany SE, Anderson TD, Pilon-Smits EA, Pilon M (2006) CpSufE activates the cysteine desulfurase CpNifS for chloroplastic Fe–S cluster formation. J Biol Chem 281:8958–8969PubMedCrossRefGoogle Scholar
  59. Yuvaniyama P, Agar JN, Cash VL, Johnson MK, Dean DR (2000) NifS-directed assembly of a transient [2Fe–2S] cluster within the NifU protein. Proc Natl Acad Sci USA 97:599–604Google Scholar
  60. Zhao C, Craig JC, Petzold HE, Dickerman AW, Beers EP (2005) The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiol 138:803–818PubMedCrossRefGoogle Scholar
  61. Zheng L, Cash VL, Flint DH, Dean DR (1998) Assembly of iron–sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273:13264–13272PubMedCrossRefGoogle Scholar
  62. Zheng L, White RH, Cash VL, Jack RF, Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci USA 90:2754–2758PubMedCrossRefGoogle Scholar
  63. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Ana Paula Guedes Frazzon
    • 1
    • 3
  • Melissa V. Ramirez
    • 1
  • Ujwala Warek
    • 1
    • 5
  • Janneke Balk
    • 4
  • Jeverson Frazzon
    • 2
    • 3
  • Dennis R. Dean
    • 2
  • Brenda S. J. Winkel
    • 1
  1. 1.Department of Biological SciencesVirginia TechBlacksburgUSA
  2. 2.Department of BiochemistryVirginia TechBlacksburgUSA
  3. 3.Federal University of Rio Grande do SulPorto AlegreBrazil
  4. 4.Department of Plant SciencesUniversity of CambridgeCambridgeUK
  5. 5.Philip Morris USARichmondUSA

Personalised recommendations