Skip to main content
Log in

Localization and Quantification of Plasma Membrane Aquaporin Expression in Maize Primary Root: A Clue to Understanding their Role as Cellular Plumbers

Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Water movement across root tissues occurs by parallel apoplastic, symplastic, and transcellular pathways that the plant can control to a certain extent. Because water channels or aquaporins (AQPs) play an important role in regulating water flow, studies on AQP mRNA and protein expression in different root tissues are essential. Here, we quantified and localized the expression of Zea mays plasma membrane AQPs (ZmPIPs) in primary root tip using in situ and quantitative RT-PCR and immunodetection approaches. All ZmPIP genes except ZmPIP2;7 were expressed in primary roots. Expression was found to be dependent on the developmental stage of the root, with, in general, an increase in expression towards the elongation and mature zones. Two genes, ZmPIP1;5 and ZmPIP2;5, showed the greatest increase in expression (up to 11- and 17-fold, respectively) in the mature zone, where they accounted for 50% of the total expressed ZmPIPs. The immunocytochemical localization of ZmPIP2;1 and ZmPIP2;5 in the exodermis and endodermis indicated that they are involved in root radial water movement. In addition, we detected a polar localization of ZmPIP2;5 to the external periclinal side of epidermal cells in root apices, suggesting an important role in water uptake from the root surface. Finally, protoplast swelling assays showed that root cells display a variable, but globally low, osmotic water permeability coefficient (P f < 10 µm/s). However, the presence of a population of cells with a higher P f (up to 26 µm/s) in mature zone of the root might be correlated with the increased expression of several ZmPIP genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

ABA:

abscisic acid

AQP:

aquaporin

Lpr :

root hydraulic conductivity

P f :

osmotic water permeability coefficient

RT-PCR:

reverse transcription-PCR

ZmPIP:

Zea mays plasma membrane intrinsic protein

References

  • Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:72–78

    Article  CAS  PubMed  Google Scholar 

  • Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    Article  CAS  PubMed  Google Scholar 

  • Amodeo G, Dorr R, Vallejo A, Sutka M, Parisi M (1999) Radial and axial water transport in the sugar beet storage root. J Exp Bot 50:509–516

    Article  CAS  Google Scholar 

  • Aroca R, Amodeo G, Fernandez-Illescas S, Herman EM, Chaumont F, Chrispeels MJ (2005) The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol 137:341–353

    Article  CAS  PubMed  Google Scholar 

  • Azaizeh H, Gunse B, Steudle E (1992) Effects of NaCl and CaCl2 on water transport across root-cells of maize (Zea-mays L.) seedlings. Plant Physiol 99:886–894

    Article  CAS  PubMed  Google Scholar 

  • Barrieu F, Chaumont F, Chrispeels MJ (1998) High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize. Plant Physiol 117:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805

    Article  CAS  PubMed  Google Scholar 

  • Boyer J (1985) Water transport. Ann Rev Plant Physiol 36:473–516

    Google Scholar 

  • Bret-Harte MS, Silk WK (1994) Nonvascular, symplasmic diffusion of sucrose cannot satisfy the carbon demands of growth in the primary root tip of Zea mays L. Plant Physiol 105:19–33

    CAS  PubMed  Google Scholar 

  • Brown D (2003) The ins and outs of aquaporin-2 trafficking. Am J Physiol Renal Physiol 284:F893–F901

    CAS  PubMed  Google Scholar 

  • Brundrett MC, Enstone DE, Peterson CA (1988) A berberine-aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant-tissue. Protoplasma 146:133–142

    Article  Google Scholar 

  • Carvajal M, Cerda A, Martinez V (2000) Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity? New Phytol 145:439–447

    Article  CAS  Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199:372–381

    Article  CAS  Google Scholar 

  • Carvajal M, Martinez V, Alcaraz CF (1999) Physiological function of water channels as affected by salinity in roots of paprika pepper. Physiol Plant 105:95–101

    Article  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Jung R, Chrispeels MJ (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122:1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  CAS  PubMed  Google Scholar 

  • Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    Article  CAS  PubMed  Google Scholar 

  • de Dorlodot S, Bertin P, Baret PV, Draye X (2005) Scaling up quantitative phenotyping of root system architecture using a combination of aeroponics and image analysis. Aspect Appl Biol 73:41–54

    Google Scholar 

  • Enstone DE, Peterson CA (2005) Suberin lamella development in maize seedling roots grown in aerated and stagnant conditions. Plant Cell Environ 28:444–455

    Article  Google Scholar 

  • Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215–228

    Article  CAS  PubMed  Google Scholar 

  • Frensch J, Hsiao TC, Steudle E (1996) Water and solute transport along developing maize roots. Planta 198:348–355

    Article  Google Scholar 

  • Gaspar M, Bousser A, Sissoeff I, Roche O, Hoarau J, Mahe A (2003) Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. Plant Sci 165:21–31

    Article  CAS  Google Scholar 

  • Guan KL, Dixon JE (1991) Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem 192:262–267

    Article  CAS  PubMed  Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264

    Article  CAS  PubMed  Google Scholar 

  • Hukin D, Doering-Saad C, Thomas CR, Pritchard J (2002) Sensitivity of cell hydraulic conductivity to mercury is coincident with symplasmic isolation and expression of Plasmalemma aquaporin genes in growing maize roots. Planta 215:1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa H, Evans ML (1995) Specialized zones of development in roots. Plant Physiol 109:725–727

    CAS  PubMed  Google Scholar 

  • Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725

    Article  CAS  PubMed  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot (Lond) 90:301–313

    Article  CAS  Google Scholar 

  • Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000) The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta 1465:324–342

    Article  CAS  PubMed  Google Scholar 

  • Karahara I, Ikeda A, Kondo T, Uetake Y (2004) Development of the Casparian strip in primary roots of maize under salt stress. Planta 219:41–47

    Article  CAS  PubMed  Google Scholar 

  • Lopez M, Bousser AS, Sissoeff I, Gaspar M, Lachaise B, Hoarau J, Mahe A (2003) Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins. Plant Cell Physiol 44:1384–1395

    Article  CAS  PubMed  Google Scholar 

  • Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96

    Article  CAS  Google Scholar 

  • Maggio A, Joly RJ (1995) Effects of mercuric chloride on the hydraulic conductivity of tomato root systems (evidence for a channel-mediated water pathway). Plant Physiol 109:331–335

    CAS  PubMed  Google Scholar 

  • Marino JH, Cook P, Miller KS (2003) Accurate and statistically verified quantification of relative mRNA abundances using SYBR Green I and real-time RT-PCR. J Immunol Methods 283:291–306

    Article  CAS  PubMed  Google Scholar 

  • Martre P, Morillon R, Barrieu F, North GB, Nobel PS, Chrispeels MJ (2002) Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol 130:2101–2110

    Article  CAS  PubMed  Google Scholar 

  • Martre P, North GB, Nobel PS (2001) Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewetting. Plant Physiol 126:352–362

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Chrispeels MJ (2001) Aquaporins. A molecular entry into plant water relations. Plant Physiol 125:135–138

    Article  CAS  PubMed  Google Scholar 

  • Moore R, Smith HS (1990) Morphometric analysis of epidermal differentiation in primary roots of Zea-mays. Am J Bot 77:727–735

    Article  CAS  PubMed  Google Scholar 

  • Morsomme P, de Kerchove d’Exaerde A, De Meester S, Thines D, Goffeau A, Boutry M (1996) Single point mutations in various domains of a plant plasma membrane H(+)-ATPase expressed in Saccharomyces cerevisiae increase H(+)-pumping and permit yeast growth at low pH. Embo J 15:5513–5526

    CAS  PubMed  Google Scholar 

  • Moshelion M, Moran N, Chaumont F (2004) Dynamic changes in the osmotic water permeability of protoplast plasma membrane. Plant Physiol 135:2301–2317

    Article  CAS  PubMed  Google Scholar 

  • Nuovo GJ (1996) The foundations of successful RT in situ PCR. Front Biosci 1:c4–c15

    CAS  PubMed  Google Scholar 

  • Oparka KJ, Duckett CM, Prior DAM, Fisher DB (1994) Real-time imaging of phloem unloading in the root-tip of arabidopsis. Plant J 6:759–766

    Article  Google Scholar 

  • Otto B, Kaldenhoff R (2000) Cell-specific expression of the mercury-insensitive plasma-membrane aquaporin NtAQP1 from Nicotiana tabacum. Planta 211:167–172

    Article  CAS  PubMed  Google Scholar 

  • Patrick JW, Offler CE (1996) Post-sieve element transport of photoassimilates in sink regions. J Exp Bot 47:1165–1177

    CAS  Google Scholar 

  • Perumalla CJ, Peterson CA (1986) Deposition of Casparian bands and suberin lamellae in the exodermis and endodermis of young corn and onion roots. Can J Bot 64:1873–1878

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  Google Scholar 

  • Ramahaleo T, Morillon R, Alexandre J, Lassalles JP (1999) Osmotic water permeability of isolated protoplasts. Modifications during development. Plant Physiol 119:885–896

    Article  CAS  PubMed  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (1992) The movement of water and solutes in plants. In: Mastalski SAE (ed) Biology of plants. Worth Publishers, New York

    Google Scholar 

  • Schaffner AR (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204:131–139

    Article  CAS  PubMed  Google Scholar 

  • Schraut D, Ullrich CI, Hartung W (2004) Lateral ABA transport in maize roots (Zea mays): visualization by immunolocalization. J Exp Bot 55:1635–1641

    Article  CAS  PubMed  Google Scholar 

  • Steudle E (2000) Water uptake by plant roots: an integration of views. Plant Soil 226:45–56

    Article  CAS  Google Scholar 

  • Steudle E (2001) The cohesion-tension mechanism and the acquisition of water by plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:847–875

    Article  CAS  PubMed  Google Scholar 

  • Suga S, Imagawa S, Maeshima M (2001) Specificity of the accumulation of mRNAs and proteins of the plasma membrane and tonoplast aquaporins in radish organs. Planta 212:294–304

    Article  CAS  PubMed  Google Scholar 

  • Suga S, Komatsu S, Maeshima M (2002) Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant Cell Physiol 43:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Tazawa M, Ohkuma E, Shibasaka M, Nakashima S (1997) Mercurial-sensitive water transport in barley roots. J Plant Res 110:435–442

    Article  CAS  Google Scholar 

  • Tyerman SD, Bohnert HJ, Maurel C, Steudle E, Smith JAC (1999) Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot 50:1055–1071

    Article  CAS  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Google Scholar 

  • Zhu C, Schraut D, Hartung W, Schaffner AR (2005) Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 56:2971–2981

    Article  CAS  PubMed  Google Scholar 

  • Zhu GL, Steudle E (1991) Water transport across maize roots—simultaneous measurement of flows at the cell and root level by double pressure probe technique. Plant Physiol 95:305–315

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann HM, Hartmann K, Schreiber L, Steudle E (2000) Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.). Planta 210:302–311

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann HM, Steudle E (1998) Apoplastic transport across young maize roots: effect of the exodermis. Planta 206:7–19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Belgian National Fund for Scientific Research (FNRS), the Interuniversity Attraction Poles Programme—Belgian Science Policy, and the “Communauté française de Belgique—Actions de Recherches Concertées”. F.C. is a Senior Research Associate and C.H. a Research Fellow at the FNRS; E.Z. is a Research Fellow at the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture. We thank R. Jung (Pioneer Hi-Bred International) for providing ZmPIP cDNAs, M. Maeshima (Nagoya University, Japan) and M. Boutry (Université catholique de Louvain) for supplying the anti-RsPIP1 and anti-PMA antibodies, respectively, and T. Trombik and E. Peeters (Université catholique de Louvain) for supplying pGex-KG’ plasmid. We are very grateful to X. Draye and T. Lavigne for the use of the aeroponics facility and advices, and to M. Boutry and X. Draye for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Chaumont.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hachez, C., Moshelion, M., Zelazny, E. et al. Localization and Quantification of Plasma Membrane Aquaporin Expression in Maize Primary Root: A Clue to Understanding their Role as Cellular Plumbers. Plant Mol Biol 62, 305–323 (2006). https://doi.org/10.1007/s11103-006-9022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9022-1

Keywords

Navigation