Plant Molecular Biology

, Volume 61, Issue 4–5, pp 687–697 | Cite as

Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues

  • Luis Destefano-Beltrán
  • Donna Knauber
  • Linda Huckle
  • Jeffrey C. Suttle


At harvest, and for an indeterminate period thereafter, potato tubers will not sprout and are physiologically dormant. Abscisic acid (ABA) has been shown to play a critical role in tuber dormancy control but the mechanisms controlling ABA content during dormancy as well as the sites of ABA synthesis and catabolism are unknown. As a first step in defining the sites of synthesis and cognate processes regulating ABA turnover during storage and dormancy progression, gene sequences encoding the ABA biosynthetic enzymes zeaxanthin epoxidase (ZEP) and 9-cis-epoxycarotenoid dioxygenase (NCED) and three catabolism-related genes were used to quantify changes in their relative mRNA abundances in three specific tuber tissues (meristems, their surrounding periderm and underlying cortex) by qRT-PCR. During storage, StZEP expression was relatively constant in meristems, exhibited a biphasic pattern in periderm with transient increases during early and mid-to-late-storage, and peaked during mid-storage in cortex. Expression of two members of the potato NCED gene family was found to correlate with changes in ABA content in meristems (StNCED2) and cortex (StNCED1). Conversely, expression patterns of three putative ABA-8′-hydroxylase (CYP707A) genes during storage varied in a tissue-specific manner with expression of two of these genes rising in meristems and periderm and declining in cortex during storage. These results suggest that ABA synthesis and metabolism occur in all tuber tissues examined and that tuber ABA content during dormancy is the result of a balance of synthesis and metabolism that increasingly favors catabolism as dormancy ends and may be controlled at the level of StNCED and StCYP707A gene activities


ABA Dormancy Gene expression Potato Solanum tuberosum L. Tuber qRT-PCR 



Abscisic acid


9-cis-epoxycarotenoid dioxygenase


Zeaxanthin epoxidase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

supp.doc (22 kb)
Supplementary material
supp1.jpg (933 kb)
Supplementary material
supp2.jpg (38 kb)
Supplementary material
supp3.jpg (271 kb)
Supplementary material
supp4.jpg (70 kb)
Supplementary material


  1. Biemelt, S, Hajirezaei, M, Hentschel, E, Sonnewald, U 2000Comparative analysis of abscisic acid content and starch degradation during storage of tubers harvested from different potato varietiesPotato Res43371382CrossRefGoogle Scholar
  2. Burbidge, A, Grieve, TM, Jackson, AJ, Taylor, IB 1997Structure and expression of a cDNA encoding a putative neoxanthin cleavage enzyme (NCE), isolated from a wilt-related tomato (Lycopersicon esculentum Mill.) libraryJ Exp Bot4821112112CrossRefGoogle Scholar
  3. Burton, WG 1989The potato3Longman Scientific & TechnicalHarlow, UK742Google Scholar
  4. Cheng, WH, Endo, A, Zhou, L, Penney, J, Chen, HC, Arroyo, A, León, P, Nambara, E, Asami, T, Seo, M, Koshiba, T, Sheen, J 2002A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functionsPlant Cell1427232743PubMedCrossRefGoogle Scholar
  5. Chernys, JT, Zeevaart, JAD 2000Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid in avocadoPlant Physiol124343353PubMedCrossRefGoogle Scholar
  6. Claassens, MMJ, Vreugdenhil, D 2000Is dormancy breaking of potato tubers the reverse of tuber initiation?Potato Res43347369CrossRefGoogle Scholar
  7. Coleman, WK, King, RR 1984Changes in endogenous abscisic acid, soluble sugars and proline levels during tuber dormancy in Solanum tuberosum LAm Potato J61437449Google Scholar
  8. Cutler, AJ, Krochko, JE 1999Formation and breakdown of ABATrends Plant Sci4472478PubMedCrossRefGoogle Scholar
  9. Cvikora, M, Sukhova, LS, Eder, J, Korableva, NP 1994Possible involvement of abscisic acid, ethylene, and phenolic acids in potato tuber dormancyPlant Physiol Biochem32685691Google Scholar
  10. Ducreux, LJM, Morris, WL, Hedley, PE, Shepherd, T, Davies, HV, Millam, S, Taylor, MA 2005Metabolic engineering of high carotenoid potato tubers containing enhanced levels of ß-carotene and luteinJ Exp Bot568189PubMedGoogle Scholar
  11. Ewing, EE, Simko, I, Omer, EA, Davies, PJ 2004Polygene mapping as a tool to study the physiology of potato tuberization and dormancyAm J Potato Res81281289Google Scholar
  12. Faivre-Rampant, O, Cardle, L, Marshall, D, Viola, R, Taylor, M 2004aChanges in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor geneJ Exp Bot55613622CrossRefGoogle Scholar
  13. Faivre-Rampant, O, Bryan, GJ, Roberts, AG, Milbourne, D, Viola, R, Taylor, M 2004bRegulated expression of a novel TCP domain transcription factor indicates an involvement in the control of meristem activation processes in Solanum tuberosum J Exp Bot55951953CrossRefGoogle Scholar
  14. Fernie, AR, Willmitzer, L 2001Molecular and biochemical triggers of potato tuber developmentPlant Physiol12714591465PubMedCrossRefGoogle Scholar
  15. González-Guzmán, M, Apostolova, N, Bellés, JM, Barrero, JM, Piqueras, P, Ponce, MR, Micol, JL, Serrano, R, Rodríguez, PL 2002The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehydePlant Cell1418331846PubMedCrossRefGoogle Scholar
  16. González-Guzmán, M, Abia, D, Salinas, J, Serrano, R, Rodríguez, PL 2004Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its role in abscisic acid biosynthesis in seedsPlant Physiol135325333PubMedCrossRefGoogle Scholar
  17. Ji, ZL, Wang, SY 1988Reduction of abscisic acid content and induction of sprouting in potato, Solanum tuberosum L., by thidiazuronPlant Growth Regul73744CrossRefGoogle Scholar
  18. Kallberg, Y, Oppermann, U, Jörnvall, H, Persson, B 2002Short-chain dehydrogenases/reductases (SDRs): coenzyme-based functional assignments in completed genomesEur J Biochem26944094417PubMedCrossRefGoogle Scholar
  19. Korableva, NP, Karavaeva, KA, Metlitskii, LV 1980Changes of abscisic acid content in potato tuber tissue in the period of deep dormancy and during germinationFizilogia Rast27441446Google Scholar
  20. Krochko, JE, Abrams, GD, Loewen, MK, Abrams, SR, Cutler, AJ 1998(+)-abscisic acid 8′-hydroxylase is a cytochrome P450 monoxygenasePlant Physiol118849860PubMedCrossRefGoogle Scholar
  21. Kushiro, T, Okamoto, M, Nakabayashi, K, Yamagishi, K, Kitamura, S, Asami, T, Hirai, N, Koshiba, T, Kamiya, Y, Nambara, E 2004The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolismEMBO J2316471656PubMedCrossRefGoogle Scholar
  22. Law, RD, Suttle, JC 2002Transient decreases in methylation at 5′-CCGG-3′ sequences in potato (Solanum tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growthPlant Mol Biol51437447CrossRefGoogle Scholar
  23. Lefebvre, V, North, H, Frey, A, Sotta, B, Seo, M, Okamoto, M, Nambara, E, Marion-Poll, A 2006Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancyPlant J45309319PubMedCrossRefGoogle Scholar
  24. Nambara, E, Marion-Poll, A 2005Abscisic acid biosynthesis and catabolismAnnu Rev Plant Biol56165185PubMedCrossRefGoogle Scholar
  25. Narváez-Vásquez, J, Ryan, CA 2002The systemin precursor gene regulates both defensive and developmental genes in Solanum tuberosum Proc Natl Acad Sci USA991581815821PubMedCrossRefGoogle Scholar
  26. Pfaffl, MW 2001A new mathematical model for relative quantification in real-time RT-PCRNucleic Acids Res2920022007CrossRefGoogle Scholar
  27. Römer, S, Lübeck, J, Kauder, F, Steiger, S, Adomat, C, Sandmann, G 2002Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidationMetab Eng4263272PubMedCrossRefGoogle Scholar
  28. Saito, S, Hirai, N, Matsumoto, C, Ohigashi, H, Ohta, D,  et al. 2004Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acidPlant Physiol13414391449PubMedCrossRefGoogle Scholar
  29. Schwartz, SH, Tan, BC, Gage, DA, Zeevaart, JAD, McCarty, DR 1997Specific oxidative cleavage of carotenoid by VP14 of maizeScience27618721874PubMedCrossRefGoogle Scholar
  30. Seo, M, Aoki, H, Koiwai, H, Kamiya, Y, Nambara, E, Koshiba, T 2004Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seedsPlant Cell Physiol4516941703PubMedCrossRefGoogle Scholar
  31. Suttle, JC 1995Postharvest changes in endogenous ABA levels and ABA metabolism in relation to dormancy in potato tubersPhysiol Plant95233240CrossRefGoogle Scholar
  32. Suttle, JC 2004Physiological regulation of potato tuber dormancyAm J Potato Res81253262Google Scholar
  33. Suttle, JC, Hultstrand, JF 1994Role of endogenous abscisic acid in potato microtuber dormancyPlant Physiol105891896PubMedGoogle Scholar
  34. Tan, BC, Joseph, LM, Deng, WT, Liu, L, Li, QB, Cline, K, McCarty, DR 2003Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene familyPlant J354456PubMedCrossRefGoogle Scholar
  35. Taylor, IB 1991Genetics of ABA synthesisDavies, WJJones, HG eds. Abscisic acid. Physiology and biochemistryBios Scientific PublishersOxford, UK2338Google Scholar
  36. Berg, JH, Vreugdenhil, D, Ludford, PM, Hillman, LL, Ewing, EE 1991Changes in starch, and abscisic acid contents associated with second growth in tubers of potato (Solanum tuberosum L.) one-leaf cuttingsJ Plant Physiol1398689Google Scholar
  37. Berg, JH, Ewing, EE, Plaisted, RL, McMurray, S, Bonierbale, MW 1996QTL analysis of potato tuber dormancyTheor Appl Genet93317324CrossRefGoogle Scholar
  38. Vreugdenil, D 2004Comparing potato tuberization and sprouting: opposite phenomena?Am J Potato Res81275281CrossRefGoogle Scholar
  39. Xiong, L, Zhu, J-K 2003Regulation of abscisic acid biosynthesisPlant Physiol1332936PubMedCrossRefGoogle Scholar
  40. Zhou, R, Cutler, AJ, Ambrose, SJ, Galka, MM, Nelson, KM, Squires, TM, Loewen, MK, Jadhav, AS, Ross, ARS, Taylor, DC, Abrams, SJ 2004A new abscisic acid catabolic pathwayPlant Physiol134361369PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Luis Destefano-Beltrán
    • 1
  • Donna Knauber
    • 1
  • Linda Huckle
    • 1
  • Jeffrey C. Suttle
    • 1
  1. 1.United States Department of Agriculture, Agricultural Research Service, Sugarbeet and Potato Research UnitNorthern Crop Science LaboratoryFargoUSA

Personalised recommendations