Advertisement

Plant Molecular Biology

, Volume 61, Issue 4–5, pp 567–575 | Cite as

A Psb27 homologue in Arabidopsis thaliana is required for efficient repair of photodamaged photosystem II

  • Hua Chen
  • Dongyuan Zhang
  • Jinkui Guo
  • Hao Wu
  • Meifang Jin
  • Qingtao Lu
  • Congming Lu
  • Lixin Zhang
Article

Abstract

Psb27 has been identified as a lumenal protein associated with photosystem II (PSII). To gain insight into the function of Psb27, we isolated a mutant Arabidopsis plant with a loss of psb27 function. The quantity of PSII complexes and electron transfer within PSII remained largely unaffected in the psb27 mutant. Our results also showed that under high-light-illumination, PSII activity and the content of the PSII reaction center protein D1 decreased more significantly in the psb27 mutant than in wild-type (WT) plant. Treatment of leaves with a chloroplast protein synthesis inhibitor resulted in similar light-induced PSII inactivation levels and D1 protein degradation rates in the WT and psb27 mutant plants. Recovery of PSII activity after photoinhibition was delayed in the psb27 mutant, suggesting that Psb27 is required for efficient recovery of the photodamaged PSII complex. Overall, these results demonstrated that Psb27 in Arabidopsis is not essential for oxygenic photosynthesis and PSII formation. Instead, our results provide evidence for the involvement of this lumenal protein in the recovery process of PSII.

Keywords

Arabidopsis thaliana Assembly D1 Protein Photosystem II Photoinhibition psb27 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, B, Styring, S 1991Photosystem 2-organization, function and acclimationLee, CP eds. Current topics in bioenergeticsAcademic PressNew York281Google Scholar
  2. Anderson, JM, Melis, A 1983Localization of different photosystems in separate regions of chloroplast membranesProc Natl Acad Sci USA80745749PubMedCrossRefGoogle Scholar
  3. Aro, E-M, Virgin, I, Andersson, B 1993Photoinhibition of Photosystem II. Inactivation, protein damage and turnoverBiochim Biophys Acta1143113134PubMedCrossRefGoogle Scholar
  4. Barber, J, Andersson, B 1992Too much of a good thing: light can be bad for photosynthesisTrends Biochem Sci176166PubMedCrossRefGoogle Scholar
  5. Cline, K, Mori, H 2001Thylakoid delta pH-dependent precursor proteins bind to a cpTatC–Hcf106 complex before Tha4-dependent transportJ Cell Biol154719730PubMedCrossRefGoogle Scholar
  6. Clough, SJ, Bent, AF 1998Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana Plant J16735743PubMedCrossRefGoogle Scholar
  7. Vitry, C, Olive, J, Drapier, D, Recouvreur, M, Wollman, F-A 1989Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii J Cell Biol1099911006PubMedCrossRefGoogle Scholar
  8. Diner, BA 1998Photosynthesis: molecular biology of energy captureMethods Enzymol297337360CrossRefGoogle Scholar
  9. Eckert, H-J, Geiken, B, Bernarding, J, Napiwotzki, A, Eichler, HJ, Renger, G 1991Two sites of photoinhibition of the electron transfer in oxygen evolving and Tris-treated PS II membrane fragments from spinachPhotosynth Res2797108CrossRefGoogle Scholar
  10. Ferreira, KN, Iverson, TM, Maghlaoui, K, Barber, J, Iwata, S 2004Architecture of the photosynthetic oxygen-evolving centerScience30318311838PubMedCrossRefGoogle Scholar
  11. Guo, JK, Zhang, ZZ, Bi, YR, Yang, W, Xu, YN, Zhang, LX 2005Decreased stability of photosystem I in dgd1 mutant of Arabidopsis thaliana FEBS Lett57936193624PubMedCrossRefGoogle Scholar
  12. Huang, CH, He, WL, Guo, JK, Chang, XX, Su, PX, Zhang, LX 2005Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutantJ Exp Bot5630413049PubMedCrossRefGoogle Scholar
  13. Ikeuchi, M, Inoue, Y, Vermaas, WFJ 1995Characterization of photosystem II subunits from the cyanobacterium Synechocystis sp. PCC 6803Mathis, P eds. Photosynthesis: from light to biosphereKluwer Academic PublishersThe Netherlands297300Google Scholar
  14. Kashino, Y, Lauber, WM, Carroll, JA, Wang, Q, Whitmarsh, J, Satoh, K, Pakrasi, HB 2002Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptidesBiochemistry4180048012PubMedCrossRefGoogle Scholar
  15. Komenda, J, Barber, J 1995Comparision of psbO and psbH deletion mutants of Synechocystis PCC-6803 indicates that degradation of D1 protein is regulated by the QB site and dependent on protein synthesisBiochemistry3496259631PubMedCrossRefGoogle Scholar
  16. Laemmli, UK 1970Cleavage of structural proteins during the assembly of the head of bacteriophage T4Nature227680685PubMedCrossRefGoogle Scholar
  17. Lazár, D 1999Chlorophyll a fluorescence inductionBiochim Biophys Acta1412128PubMedCrossRefGoogle Scholar
  18. Liu, YG, Mitsukawa, N, Oosumi, T, Whittier, RF 1995Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junction by thermal asymmetric interlaced PCRPlant J8457463PubMedCrossRefGoogle Scholar
  19. Loll, B, Kern, J, Saeger, W, Zouni, A, Biesiadka, J 2005Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem IINature43810401044PubMedCrossRefGoogle Scholar
  20. Meetam, M, Keren, N, Ohad, I, Pakrasi, HB 1999The PsbY is not essential for oxygenic photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803Plant Physiol12112671272PubMedCrossRefGoogle Scholar
  21. Murakami, R, Ifuku, K, Takabayashi, A, Shikanai, T, Endo, T, Sato, F 2002Characterization of an Arabidopsis thaliana mutant with impaired psbO, one of two genes encoding extrinsic 33-kDa proteins in photosystem IIFEBS Lett523138142PubMedCrossRefGoogle Scholar
  22. Nanba, O, Satoh, K 1987Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559Proc Natl Acad Sci USA84109112PubMedCrossRefGoogle Scholar
  23. Peltier, JB, Emanuelsson, O, Kalume, DE, Ytterberg, J, Friso, G, Rudella, A, Liberles, DA, Soderberg, L, Roepstorff, P, Heijne, G, Wijk, KJ 2002Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide predictionPlant Cell14211236PubMedCrossRefGoogle Scholar
  24. Porra, RJ, Thompson, WA, Kriedemann, PE 1989Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrometryBiochim Biophys Acta975384394Google Scholar
  25. Prasil, O, Adir, N, Ohad, I 1992Dynamics of photosystem II: mechanisms of photoinhibition and recovery processBarber, J eds. The photosystems: structure, function and molecular biologyElsevier Science PublishersAmsterdam295348Google Scholar
  26. Roose, JL, Pakrasi, HB 2004Evidence that D1 processing is required for manganese binding and extrinsic protein assembly into photosystem IIJ Biol Chem2794541745422PubMedCrossRefGoogle Scholar
  27. Rova, M, Namedov, F, Magnuson, A, Fredriksson, PO, Styring, S 1998Coupled activation of donor and the acceptor side of photosystem II during photoactivation of the oxygen evolving clusterBiochemistry371103911045PubMedCrossRefGoogle Scholar
  28. Sambrook J, Russell DW (2001) Molecular clone, a laboratory manual. Cold Spring Harbor Laboratory PressGoogle Scholar
  29. Schägger, H, Cramer, WA, Jagow, G 1994Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresisAnal Biochem217220230PubMedCrossRefGoogle Scholar
  30. Schägger, H, Jagow, G 1987Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDaAnal Biochem166368379PubMedCrossRefGoogle Scholar
  31. Shi, LX, Schröder, WP 2004The low molecular mass subunits of the photosynthetic supracomplex, photosystem IIBiochim Biophys Acta16087596PubMedCrossRefGoogle Scholar
  32. Trìlek, M, Kramer, DM, Koblizek, M, Nedbal, L 1997Dual modulation LED kinetic fluometerJ Lumin72–74597599CrossRefGoogle Scholar
  33. Vass, I, Styring, S, Hundal, T, Koivuniemi, A, Aro, E-M, Andersson, B 1992Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formationProc Natl Acad Sci USA8914081412PubMedCrossRefGoogle Scholar
  34. Wollman, FA, Minai, L, Nechushtai, R 1999The biogenesis and assembly of photosynthetic proteins in thylakoid membranesBiochim Biophys Acta11412185Google Scholar
  35. Zhang, LX, Aro, E-M 2002Synthesis, membrane insertion and assembly of the chloroplast-encoded D1 protein into photosystem IIFEBS Lett5121318PubMedCrossRefGoogle Scholar
  36. Zhang, LX, Paakkarinen, V, Wijk, KJ, Aro, E-M 1999Co-translational assembly of the D1 protein into photosystem IIJ Biol Chem2741606216067PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Hua Chen
    • 1
  • Dongyuan Zhang
    • 1
    • 2
  • Jinkui Guo
    • 2
  • Hao Wu
    • 1
  • Meifang Jin
    • 1
  • Qingtao Lu
    • 2
  • Congming Lu
    • 2
  • Lixin Zhang
    • 1
    • 2
  1. 1.Key Laboratory of Arid and Grassland Ecology, School of Life SciencesLanzhou UniversityLanzhouChina
  2. 2.Photosynthesis Research center, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of BotanyChinese Academy of SciencesBeijingChina

Personalised recommendations