Plant Molecular Biology

, Volume 59, Issue 2, pp 269–287 | Cite as

Photoregulation of the Greening Process of Wheat Seedlings Grown in Red Light*

  • Suchi Sood
  • Varsha Gupta
  • Baishnab C. Tripathy


Wheat seedling grown with their shoot bottom exposed to red light (400 μmol m−2 s−1) either with constant illumination or light-dark cycles did not accumulate chlorophyll. This near-etiolation response was manifested by a critical threshold intensity of red light and did not need continuous illumination. The inhibition of the greening process resulted from reduced synthesis of glutamate-1-semialdehyde and consequent reduction in tetrapyrrole precursor 5-aminolevulinic acid. Red light perceived by the shoot bottom down regulated the protein and/or gene expression of enzymes involved in the biosynthesis of tetrapyrroles. The contents of endogenous cytokinins, i.e., isopentenyl-adenosine and dihydrozeatinriboside, were reduced in seedlings grown in red light having their shoot bottom exposed. Application of exogenous cytokinin and its analogue to roots of seedlings grown in red light reversed the down regulation of the greening process. The reversal of red-light-induced near-etiolation morphogenesis by far-red (200 μmol m−2 s−1) or blue (25 μmol m−2 s−1) light suggests that it could be a very high red-irradiance response of phytochrome, in the meristematic layers of the shoot bottom, that works in concert with blue light receptor(s).


blue light chlorophyll biosynthesis cytokinin photoreceptor phytochrome red light 



δ-aminolevulinic acid


δ-aminolevulinic acid dehydratase




coproporphyrinogen III oxidase


Glutamyl- tRNA synthetase


Glutamyl-tRNA reductase




glutamate-1-semialdehyde amino transferase




porphobilinogen deaminase




protochlorophyllide oxidoreductase


protoporphyrin IX


protoporphyrinogen IX oxidase


uroporphyrinogen III decarboxylase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beggs, C.J., Holmes, M.G., Jabben, M., Schaefer, E. 1980Action spectra for the inhibition of hypocotyls growth by continuous irradiation in light-and dark grown Sinapis alba L. SeedlingsPlant Physiol.66615618Google Scholar
  2. Bogorad, L. 1962Porphyrin synthesisMethods Enzymol.5885895CrossRefGoogle Scholar
  3. Breu, V., Dornemann, D. 1988Formation of 5-aminolevulinic acid via glutamate-1-semialdehyde and 4,5 dioxovalerate with participation of an RNA component in Schenedesmus obliqus mutant c-2aBiochim. Biophys. Acta967135140PubMedGoogle Scholar
  4. Buschmann, C., Meier, D., Kleudgen, H.K., Lichtenthaler, H.K. 1978Regulation of chloroplast development by red and blue lightPhotochem. Photobiol.27195198Google Scholar
  5. Casal, J.J., Lucciono, L.G., Oliverio, K.A., Boccalandro, H.E. 2003Light, phytochrome signaling and photomorphogenesis in ArabidopsisPhotochem. Photobiol. Sci.2625636CrossRefPubMedGoogle Scholar
  6. Casal, J.J., Mazzella, M.A. 1998Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in ArabidopsisPlant Physiol.1181925CrossRefPubMedGoogle Scholar
  7. Chakraborty, N., Tripathy, B.C. 1992Involvement of singlet oxygen in photodynamic damage of isolated chloroplasts of cucumber (Cucumis sativus L.) cotyledonsPlant Physiol.98711Google Scholar
  8. Chomczynski, P., Sacchi, N. 1987Single-step method of RNA isolation by acid guannidinium thiocyanate-phenol-chloroform extractionAnal. Biochem.162156159CrossRefPubMedGoogle Scholar
  9. Duke, P.A., Fankhauser, C. 2003HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signalingPlant J.34827836CrossRefPubMedGoogle Scholar
  10. Eggink, L.L., Hoober, J.K. 2000Chlorophyll binding to peptide maquettes containing a retention motifJ. Biol. Chem.27590879090CrossRefPubMedGoogle Scholar
  11. Fankhauser, C. 2002Light perception in plants: cytokinins and red light join forces to keep phytochrome B activeTrends Plant Sci.7143145CrossRefPubMedGoogle Scholar
  12. Folta, K.M., Spalding, E.P. 2001Opposing roles of phytochrome A and phytochrome B in early cryptochrome-mediated growth inhibitionPlant J.2833340CrossRefPubMedGoogle Scholar
  13. Gibson, L.C., Marrison, J.L., Leech, R.M., Jensen, P.E., Bassham, D.C., Gibson, M., Hunter, C.N. 1996A putative Mg chelatase subunit from Arabidopsis thaliana cv. C24. sequence and transcript analysis of the gene, import of the protein into chloroplasts, and in situ localization of the transcript and proteinPlant Physiol.1116171CrossRefPubMedGoogle Scholar
  14. Grafe, S., Saluz, H.P., Grimm, B., Hanel, F. 1999Mg-chelatase of tobacco: the role of the subunit CHL D in the chelation step of protoporphyrin IXProc. Natl. Acad. Sci. USA96194146CrossRefPubMedGoogle Scholar
  15. Hamazato, F., Shinomura, T., Hanzawa, H., Chory, J., Furuya, M. 1997Fluence and wavelength requirements for Arabidopsis CAB gene induction by different phytochromesPlant Physiol.11515331540CrossRefPubMedGoogle Scholar
  16. Hennig, L., Funk, M., Whitelam, G.C., Schafer, E. 1999Functional interaction of cryptochrome 1 and phytochrome DPlant J.2028994PubMedGoogle Scholar
  17. Hoober, J.K., Eggink, L.L. 1999Assembly of light harvesting complex II and biogenesis of thylakoid membranes in chloroplastsPhotosynthesis Res.61197215CrossRefGoogle Scholar
  18. Hukmani, P., Tripathy, B.C. 1992Spectrofluorometric estimation of intermediates of chlorophyll biosynthesis: protoporphyrin IX, Mg-protoporphyrin, and protochlorophyllideAnal. Biochem.206125130PubMedGoogle Scholar
  19. Hukmani, P., Tripathy, B.C. 1994Chlorophyll biosynthetic reactions during senescence of excised barley (Hordeum vulgare L. cv. IB 65) leavesPlant Physiol.10512951300PubMedGoogle Scholar
  20. Hwang, I., Sheen, J. 2001Two-component circuitry in Arabidopsis cytokinin signal transductionNature413383389CrossRefPubMedGoogle Scholar
  21. Jensen, P.E., Willows, R.D., Petersen, B.L., Vothknecht, U.C., Stummann, B.M., Kannangara, C.G., Wettstein, D., Henningsen, K.W. 1996Structural genes for Mg-chelatase subunits in barley: xantha-f,-g, and –hMol GenGenet250383394Google Scholar
  22. Jilani, A., Kar, S., Bose, S., Tripathy, B.C. 1996Regulation of the carotenoid content and chloroplast development by levulinic acidPhysiol. Plant96139145CrossRefGoogle Scholar
  23. Kannagara, C.G., Schouboe, A. 1985Biosynthesis of δ-ALA in greening barley leaves. VII.Glutamate-1-semialdehyde accumulation in gabaculine treated leavesCarlsberg Res. Com.50179191Google Scholar
  24. Kannangara, C.G., Vothknecht, U.C., Hansson, M., Wettstein, D. 1997Magnesium chelatase: association with ribosome and mutant complementation studies identify barley subunit Xantha-G as a functional counterpart of Rhodobacter subunit BchDMol. Gen. Genet.2548592CrossRefPubMedGoogle Scholar
  25. Keller, Y., Bouvier, F., D’Harlingue, A., Camara, B. 1998Metabolic compartmentation of plastid prenyllipid biosynthesis. Evidence for the involvement of a multifunctional geranylgeranyl reductaseEur. J. Biochem.251413417CrossRefPubMedGoogle Scholar
  26. Kendrick, R.E., Frankland, B. 1983Phytochrome and Plant Growth2Edward ArnoldLondonGoogle Scholar
  27. Kruse, E., Mock, H.P., Grimm, B. 1995Coproporphyrinogen III oxidase from barley and tobacco-sequence analysis and initial expression studiesPlanta196796803PubMedGoogle Scholar
  28. Kubo, M., Kakimoto, T. 2000The CYTOKININ-HYPERSENSITIVE genes of Arabidopsis negatively regulate the cytokinin-signaling pathway for cell division and chloroplast developmentPlant J.23385394CrossRefPubMedGoogle Scholar
  29. Lamelli, U.K. 1970Cleavage of structural proteins during the assembly of the head of bacteriophage T4Nature227680685CrossRefPubMedGoogle Scholar
  30. Liscum, E., Hangarter, R.P. 1993Light-stimulated apical hook opening in wild-type Arabidopsis thaliana seedlingsPlant Physiol.101567572PubMedGoogle Scholar
  31. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951Protein measurement with folin phenol reagentJ. Biol. Chem.193265275PubMedGoogle Scholar
  32. Manju, R.V., Kulkarni, M.J., Prasad, T.G., Sudarshana, L., Sashidhar, V.R. 2001Cytokinin oxidase activity and cytokinin content in roots of sunflower under water stressIndian J. Exp. Biol.39786792PubMedGoogle Scholar
  33. Mas, P., Devlin, P.F., Panda, S., Kay, S.A. 2000Functional interaction of phytochrome B and cryptochrome 2Nature408207211CrossRefPubMedGoogle Scholar
  34. McCormac, A.C., Terry, M.J. 2002Loss of nuclear gene expression during the phytochrome A mediated far-red block of greening responsePlant Physiol.130402414CrossRefPubMedGoogle Scholar
  35. McCree, K.J. 1972Test of current definitions of photosynthetically active radiation against leaf photosynthesis dataAg Meteorol.10443453CrossRefGoogle Scholar
  36. Mock, H.P., Trainotti, L., Kruse, E., Grimm, B. 1995Isolation, sequencing and expression of cDNA sequences encoding uroporphyrinogen decarboxylase from tobacco and barleyPlant Mol. Biol.28245256CrossRefPubMedGoogle Scholar
  37. Montgomery, B.L., Lagarias, J.C. 2002Phytochrome ancestry: sensors of bilins and lightTrends Plant Sci.7357366CrossRefPubMedGoogle Scholar
  38. Naren, A., Prasad, T.G., Kumar, M.U., Sashidhar, V.R. 1996Determination of IAA in brassinolide treated coleoptiles of wheat by a modified indirect ELISA with polyclonal antibodiesIndian J. Exp. Biol.34257261PubMedGoogle Scholar
  39. Oosawa, N., Masuda, T., Awai, K., Fusada, N., Shimada, H., Ohta, H., Takamiya, K. 2000Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thalianaFEBS Lett.474133136CrossRefPubMedGoogle Scholar
  40. Pattanayak, G.K., Tripathy, B.C. 2002Catalytic function of a novel protein protochlorophyllide oxidoreductase C of Arabidopsis thalianaBiochem. Biophys. Res. Commun.291921924CrossRefPubMedGoogle Scholar
  41. Pfannschmidt, T., Schutze, K., Brost, M., Oelmüller, R. 2001A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustmentJ. Biol. Chem.2763612536130CrossRefPubMedGoogle Scholar
  42. Porra, R.J., Thompson, W.A., Kriedemann, P.E. 1989Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopyBiochim. Biophys. Acta975384394Google Scholar
  43. Pratt, L.H., Coleman, R.A. 1971Immunocytochemical localization of phytochromeProc Natl. Acad. Sci. USA6824312435Google Scholar
  44. Shinomura, T., Nagatani, A., Hanzawa, H., Kubota, M., Watanab, M., Furuya, M. 1996Action spectra for phytochromeA and phytochrome B-specific photoinduction of seed germination in Arabidopsis thalianaProc. Natl. Acad. Sci. USA9381298133CrossRefPubMedGoogle Scholar
  45. Shinomura, T., Uchida, K., Furuya, M. 2000Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyls elongation in ArabidopsisPlant Physiol.122147156CrossRefPubMedGoogle Scholar
  46. Sineshchekov, V., Belyaeva, O., Sudnitsin, A. 2004Up-regulation by phytochrome A of the active protochlorophyllide, Pchlide655, biosynthesis in dicots under far-red lightJ. Photochem. Photobiol. B Biol.744754CrossRefGoogle Scholar
  47. Strand, Å., Asami, T., Alonso, J., Ecker, J., Chory, J. 2003Chloroplast to nucleus communication triggered by accumulation of Mg-ProtoporphyrinIXNature4217983CrossRefPubMedGoogle Scholar
  48. Su, Q., Frick, G., Armstrong, G., Apel, K. 2001POR C of Arabidopsis thaliana: A third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by lightPlant Mol. Biol.47805813CrossRefPubMedGoogle Scholar
  49. Suzuki, T., Masuda, T., Inokuchi, H., Shimada, H., Ohta, H., Takamiya, K. 2000Over expression, enzymatic properties and tissue localization of a ferrochelatse of cucumberPlant Cell Physiol.41192199CrossRefPubMedGoogle Scholar
  50. Sweere, U., Eichenberg, K., Lohrmann, J., Mira-Rodado, V., Baurlle, I., Kudla, J., Nagy, F., Schafer, E., Harter, K. 2001Interaction of the response regulator ARR4 with phytochrome b in modulating red light signalingScience29411081111CrossRefPubMedGoogle Scholar
  51. Tewari, A.K., Tripathy, B.C. 1998Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber (Cucumis sativus L) and wheat (Triticum aestivum L)Plant Physiol.117851858CrossRefPubMedGoogle Scholar
  52. Tewari, A.K., Tripathy, B.C. 1999Acclimation of chlorophyll biosynthetic reactions to temperature stress in cucumber (Cucumis sativus L)Planta208431437CrossRefGoogle Scholar
  53. Towbin, H., Staehelin, T., Gordon, J. 1979Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applicationsProc. Natl. Acad. Sci. USA7643504354PubMedGoogle Scholar
  54. Tripathy, B.C., Brown, C.S. 1995Root-shoot interaction in the greening of wheat seedlings grown under red lightPlant Physiol.107407411PubMedGoogle Scholar
  55. Tripathy, B.C., Chakraborty, N. 19915-aminolevulinic acid induced photodynamic damage of the photosynthetic electron transport chain of cucumber (Cucuumis sativus L.) cotyledonsPlant Physiol.96761767Google Scholar
  56. Tripathy, B.C., Mohanty, P. 1980Zinc inhibition of electron transport in isolated chloroplastsPlant Physiol.6611741179Google Scholar
  57. Wade, H.K., Bibikova, T.N., Valentine, W.J., Jenkins, G.I. 2001Interactions with in a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissuePlant J.25675685CrossRefPubMedGoogle Scholar
  58. Weiler, E.W. 1980Radioimmunoassay of tZR and related cytokininsPlanta149155162CrossRefGoogle Scholar
  59. Welburn, A.R., Lichtenthaler, H. 1984Formulae and program to determine total carotenoids and Chl a and b of leaf extracts in different solventsSybesma, C. eds. Advances in Photosynthesis ResearchMartinus Nijoff/Dr. W.Junk PublishersThe Hague/Boston/ Lancaster912Vol.II.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Suchi Sood
    • 1
  • Varsha Gupta
    • 1
  • Baishnab C. Tripathy
    • 1
  1. 1.School of Life SciencesJawaharlal Nehru UniversityIndia

Personalised recommendations