Plant Molecular Biology

, Volume 60, Issue 6, pp 981–993 | Cite as

Nutrient Sensing in Plant Meristems

  • Dennis Francis
  • Nigel G. Halford


Plants need nutrient to grow and plant cells need nutrient to divide. The meristems are the factories and cells that are left behind will expand and differentiate. However, meristems are not simple homogenous entities; cells in different parts of the meristem do different things. Positional cues operate that can fate cells into different tissue domains. However, founder/stem cells persist in specific locations within the meristem e.g. the quiescent centre of root apical meristem (RAM) and the lower half of the central zone of the shoot apical meristem (SAM). Given the complexity of meristems, do their cells simply respond to a diffusing gradient of photosynthate? This in turn begs the question, why do stem cell populations tend to have longer cell cycles than their immediate descendants given that like all other cells they are directly in the path of diffusing nutrient? In this review, we have examined the extent to which nutrient sensing might be operating in meristems. The scene is set for sugar sensing, the plant cell cycle, SAMs and RAMs. Special emphasis is given to the metabolic regulator, SnRK1 (SNF1-related protein kinase 1), hexokinase and the trehalose pathway in relation to sugar sensing. The unique plant cell cycle gene, cylin-dependent kinase B1;1 may have evolved to be particularly responsive to sugar signalling pathways. Also, the homeobox gene, STIMPY, emerges strongly as a link between sugar sensing, plant cell proliferation and development. Flowering can be influenced by sucrose and glucose levels and both meristem identity and organ identity genes could well be differentially sensitive to sucrose and glucose signals. We also describe how meristems deal with extra photosynthate as a result of exposure to elevated CO2. What we review are numerous instances of how developmental processes can be affected by sugars/nutrients. However, given the scarcity of knowledge we are unable to provide uncontested links between nutrient sensing and specific activities in meristems.


cell cycle meristems nutrient sensing sugar sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alphey, L., Jimenez, J., White-Cooper, H., Dawson, I., Nurse, P., Glover, D. 1992Twine, a cdc25 homologue that functions in the male and female germlines of Drosophila Cell5147160Google Scholar
  2. Alvarez, J., Guli, C.L., Yu, X.H., Smyth, D.R. 1992TERMINAL-FLOWER – a gene affecting inflorescence development in Arabidopsis-thaliana Plant J2103116CrossRefGoogle Scholar
  3. Aon, M.G., Cortassa, S. 1999Quantitation of the effects of disruption of catabolite, (de)repression genes on the cell cycle behaviour of Saccharomyces cerevisiae Curr. Microbiol.385760PubMedCrossRefGoogle Scholar
  4. Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J., Leon, P. 2000Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugarGenes Dev.1420852096PubMedGoogle Scholar
  5. Barton, M.K., Poethig, R.S. 1993Formation of the shoot apical meristem in Arabidopsis thaliana: An analysis of development in the wild type and in the shootmeristemless mutantDevelopment119823831Google Scholar
  6. Bernier, G. 1998The control of floral evocation and morphogenesisAnn. Rev. Plant Mol. Biol. Plant Physiol.39175219CrossRefGoogle Scholar
  7. Bianchi, G., Gamba, A., Limiroli, R., Pozzi, N., Elster, R., Salamini, F., Bartels, D. 1993The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia Physiol. Plantarum87223226CrossRefGoogle Scholar
  8. Bonini, B.M., Vaeck, C., Larsson, C., Gustafsson, L., Ma, P., Winderickx, J., Dijck, P., Thevelein, J.M. 2000Expression of Escherichia coli otsA in a Saccharomyces tps1 mutant restores growth and fermentation with glucose and control of glucose influx into glycolysisBiochem. J.350261268PubMedCrossRefGoogle Scholar
  9. Brand, U., Grunewald, M., Hobe, M., Simon, R. 2000Regulation of CLV3 expression by two homeobox genes in ArabidopsisPlant Physiol.129565575CrossRefGoogle Scholar
  10. Byrne, M.E., Kidner, C.A., Martienssen, R.A. 2003Plant stem cells: divergent pathways and common themes in shoots and rootsCurr. Op. Genet. Dev.13551557PubMedCrossRefGoogle Scholar
  11. Carling, D. 2004The AMP-activated protein kinase cascade – a unifying system for energy controlTrends Biochem. Sci.291824PubMedCrossRefGoogle Scholar
  12. Carling, D., Clarke, P.R., Zammit, V.A., Hardie, D.G. 1989Purification and characterisation of the AMP-activated protein kinase – co-purification of acetyl-CoA carboxylase and 3-hydroxy-3-methylglutaryl CoA reductase kinase activityEur. J. Biochem.186129136PubMedCrossRefGoogle Scholar
  13. Carling, D., Zammit, V.A., Hardie, D.G. 1987A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesisFEBS Letts.223217222CrossRefGoogle Scholar
  14. Celenza, J.L., Carlson, M. 1986A yeast gene that is essential for release from glucose repression encodes a protein kinaseScience23311751180PubMedGoogle Scholar
  15. Chailkhyan, M.Kh., Aksdenova, N.P., Konstantinova, T.N., Bavrina, T.L. 1975The callus model of plant floweringProc. R. Soc. Lond. B190333340CrossRefGoogle Scholar
  16. Cheng, J.C., Seeley, K., Sung, Z.R. 1995 RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tipPlant Physiol.107365376PubMedCrossRefGoogle Scholar
  17. Clark, S.E., Jacobsen, S.E., Levin, J.Z., Meyerowitz, E.M. 1996The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in ArabidopsisDevelopment122:15671575Google Scholar
  18. Clowes, F.A.L. 1958Development of quiescent centres in root meristemsNew Phytol.578588CrossRefGoogle Scholar
  19. Dale, J.E. 1986Plastic responses of leaves.Jennings, D.H.Trewavas, A.J. eds. Plasticity in Plants Symp. Soc. Exp. Biol. 40Company of BiologistsCambridge287306Google Scholar
  20. DePinto, M.C., Francis, D., Gara, L. 1999The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2Protoplasma2099097Google Scholar
  21. DeWitte, W., Murray, J.A.H. 2003The plant cell cycleAnn. Rev. Plant Biol.54235264CrossRefGoogle Scholar
  22. Dickinson, J.R. 1999Carbon metabolismDickinson, J.R.Schweizer, M. eds. The Metabolism and Molecular Physiology of Saccharomyces cerevisiaeTaylor & FrancisLondon & Philadelphia PA2355Google Scholar
  23. Dickinson, J.R., Cole, D., Halford, N.G 1999A cell cycle role for a plant sucrose nonfermenting-1-related protein kinase (SnRK1) is indicated by expression in yeastPlant Growth Reg.28169174CrossRefGoogle Scholar
  24. DiDonato, R.J., Arbuckle, E., Buker, S., Sheets, J., Tobar, J., Totong, R., Grisafi, P., Fink, G.R., Celenza, J.L. 2004Arabidopsis ALF4 encodes a nuclear-localized protein required for lateral root formationPlant J.37340353PubMedCrossRefGoogle Scholar
  25. Dielen, V., Lecouvet, S., Kinet, J.-M. 2001In vitro control of floral transition in tomato, (Lycopersicon esculentum Mill.), the model for autonomously flowering plants, using the late flowering uniflora mutantJ. Exp. Bot.52715723PubMedGoogle Scholar
  26. Drennan, P.M., Smith, M.T., Goldsworthy, D., Staden, J. 1993The occurrence of trehalose in the leaves of the desiccation tolerant angiosperm Myrothamnus flabellifolius Welw J. Plant. Physiol.142493496Google Scholar
  27. Durdan, S.F., Herbert, R.J., Rogers, H.J., Francis, D. 2000The determination time of the carpel whorl is differentially sensitive to carbohydrate supply in Pharbitis nil Plant Physiol.123189200PubMedCrossRefGoogle Scholar
  28. Edgar, B.A., O’Farell, P.H. 1990The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string Cell62469480PubMedCrossRefGoogle Scholar
  29. Elliot, R.C., Betzner, AS, Huttner, E., Ooakes, M.P., Tucker, W.Q.J., Gerentes, D., Perez, P., Smyth, D.R. 1996 AINTEGUMENTA an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growthPlant Cell8155168CrossRefGoogle Scholar
  30. Francis, D. 2003The interface between the cell cycle and programmed cell death in higher plants: from division unto deathAdv. Bot. Res.40144179CrossRefGoogle Scholar
  31. Gaudin, V., Lunness, P.A., Fobert, P.R., Towers, M., Riou-Khamlichi, C., Murray, J.A.H., Coen, E., Doonan, J.H. 2000The expression of D-cyclin genes defines distinct developmental zones in snapdragon apical meristems and is locally regulated y the cycloidea genePlant Physiol.12211371148PubMedCrossRefGoogle Scholar
  32. Gallois, J.L., Woodward, C., Reddy, G.V., Sablowski, R. 2002Combined SHOOTMERISTEMLESS and WUCHSEL trigger ectopic organogenesis in Arabidopsis Development12932073217PubMedGoogle Scholar
  33. Gould, K.L., Moreno, S., Owen, D.J., Sazer, S., Nuorse, P. 1991Phosphorylation at Thr 167 is required for Schizosaccharomyces pombe p34cdc2EMBO J.1032973309PubMedGoogle Scholar
  34. Gibson, S. 2005Control of plant development and gene expression by sugar signallingCurr. Opin. Plant Biol.893102PubMedCrossRefGoogle Scholar
  35. Goddijn, O.J., Dun, K. 1999Trehalose metabolism in plantsTrends Plant. Sci.4315319PubMedCrossRefGoogle Scholar
  36. Halford, N.G., Hardie, D.G. 1998SNF1-related protein kinases: global regulators of carbon metabolism in plants?Plant Mol. Biol.37735748PubMedCrossRefGoogle Scholar
  37. Halford, N.G., Paul, M.J. 2003Carbon metabolite sensing and signallingPlant Biotech. J.1381398CrossRefGoogle Scholar
  38. Halford, N.G., Hey, S., Jhurreea, D., Laurie, S., McKibbin, R.S., Zhang, Y., Paul, M. 2003Dissection and manipulation of metabolic signalling pathwaysAnn. Appl. Biol.1422531Google Scholar
  39. Halford, N.G., Purcell, P.C., Hardie, D.G. 1999Is hexokinase really a sugar sensor in plants?Trends Plant Sci.4117120PubMedCrossRefGoogle Scholar
  40. Hardie, D.G., Carling, D. 1997The AMP-activated protein kinase: fuel gauge of the mammalian cell?Eur. J. Biochem.246259273PubMedCrossRefGoogle Scholar
  41. Hempel, F.D., Feldman, M. 1994Bi-directional inflorescence development in Arabidopsis thaliana: acropetal initiation of flowers and basipetal initiation of paracladesPlanta192276286CrossRefGoogle Scholar
  42. Howell, S.H., Lall, S., Che, P. 2003Cytokinins and shoot developmentTrends Plant Sci.8453459PubMedCrossRefGoogle Scholar
  43. Hwang, I., Sheen, J. 2001Two-component circuitry in Arabidopsis signal transductionNature413383389PubMedCrossRefGoogle Scholar
  44. Jang, J.C., Sheen, J. 1994Sugar sensing in higher plantsPlant Cell.616651679PubMedCrossRefGoogle Scholar
  45. Jang, J-C., Leon, P., Zhou, L., Sheen, J. 1997Hexokinase as a sugar sensor in higher plantsPlant Cell9519PubMedCrossRefGoogle Scholar
  46. Joubes, J., Chevalier, C., Dudits, D., Heberle-Bors, E., Inze, D., Umeda, M., Renaudin, J.-P. 2000CDK-related protein kinases in plantsPlant Mol. Biol.43607620PubMedCrossRefGoogle Scholar
  47. Khadaroo, B.B., Robbens, S., Ferraz, C., Derelle, E., Eychenie, S., Cooke, R., Peaucellier, G., Delseny, M., Demaille, J., Peer, Y., Picard, A., Moreau, H. 2004The first green lineage cdc25 dual-specificity phosphataseCell Cycle4513518Google Scholar
  48. Kinsman, E.A., Lewis, C., Davies, M.S, Young, J.E., Francis, D., Vilhar, B., Ougham, H.J. 1997Elevated CO2 stimulates cells to divide in grass meristems: a differential effect in two natural populations of Dactylis glomerata Plant Cell Env.2013091316CrossRefGoogle Scholar
  49. Landrieu, I., Costa, M., Veylder, L., Dewitte, F., Vandepoele, K., Hassan, S., Wieruszeski, J-M., Faure, J-D., Montague, M., Inze, D., Lippens, G. 2004A small CDC25 dual-specificity tyrosine-phosphatase isoform in Arabidopsis thaliana Proc. Natl Acad. Sci. USA1011338013385PubMedCrossRefGoogle Scholar
  50. Laufs, P., Dockx, J., Kronenberger, J., Traas, J. 1998 MGOUN1 and MGOUN2, two genes required for primordium initiation at the shoot apical meristem in Arabidopsis thaliana Development12512531260PubMedGoogle Scholar
  51. Laurie, S., McKibbin, R.S., Halford, N.G. 2003Antisense SNF1-related, (SnRK1) protein kinase gene represses transient activity of an α-amylase, (α-Amy2) gene promoter in cultured wheat embryosJ. Exp. Bot.54739747PubMedCrossRefGoogle Scholar
  52. Lenhard, M., Laux, T., Traas, J., Laufs, P. 2001Cell cycle regulation in the shoot apical meristemFrancis, D. eds. The Plant Cell Cycle and its InterfacesSheffield Academic PressSheffield UK159189Google Scholar
  53. Liljegren, S., Gustafson-Brown, C., Pinyopich, A., Ditta, G., Yanovsky,  1999Interactisn amiong APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fatePlant Cell1110071018PubMedCrossRefGoogle Scholar
  54. Lohmann, J.U., Hong, R.L., Hobe, M., Busch, M.A., Parcy, F., Simon, R., Weigel, D. 2001A molecular link between stem cell regulation and floral patterning in Arabidopsis Cell105793803PubMedCrossRefGoogle Scholar
  55. Long, J.A., Moan, E.I., Medford, J.I., Barton, M.K. 1996A member of the knotted class of homeodomain proteins encoded by the STM gene of ArabidopsisNature3796669PubMedCrossRefGoogle Scholar
  56. Lück, J., Barlow, P.W., Lück, H.B. 1994Deterministic patterns of cellular growth and division within a meristemAnn. Bot.73111CrossRefGoogle Scholar
  57. Lyndon, R.F. 1976The shoot apexYeoman, M.M. eds. Cell Division in Higher PlantsAcademic PressLondon285314Google Scholar
  58. Malamy, J. E. 2005Intrinsic and environmental response pathways that regulate root system architecturePlant Cell Environ.286777PubMedCrossRefGoogle Scholar
  59. Mayer, K.F., Schoof, H., Haeker, A., Lenhard, M., Jurgens, G., Laux, T. 1998Role of the WUCHSEL in regulating stem cell fate in the Arabidopsis shoot meristemCell95805815PubMedCrossRefGoogle Scholar
  60. Mészáros, T., Misklczi, P., Ayaydin, F., Pettkó-Szandtner, A., Peres, A., Magyar, Z., Horváth, G.B., Bakó, L., Fehér, A., Dudits, D. 2000Multiple cyclin-dependent kinase complexes and phosphatases control G2/M progression in alfalfa cellsPlant Mol. Biol.43595605PubMedCrossRefGoogle Scholar
  61. Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W-H., Liu, Y-X., Hwang, I., Jones, T., Sheen, J. 2003Role of the Arabidopsis glucose sensor HXK1 in nutrient, light and hormonal signallingScience300332336PubMedCrossRefGoogle Scholar
  62. Morgan, D.O. Cyclin-dependent kinases: Engines, Clocks and Microprocessors. Ann. Rev. Cell Dev. Biol. 13: 261–291EGoogle Scholar
  63. Murray, J.A.H., Freeman, D., Greenwood, J., Huntley, R., Makkerh, J., Riou-Khamlichi, C., Sorrell, D.A., Cockcroft, C., Carmichael, J.P., Soni, R., Shah, Z.H 1998Plant D cyclins and retinoblastoma protein homologuesFrancis, D.Dudits, D.Inze, D. eds. Plant Cell DivisionPortland Press LtdLondon99127Google Scholar
  64. Norbury, C., Blow, J., Nurse, P. 1991Regulatory phophorylation of the p34cdc2 protein kinase in vertebratesEMBO J.1033213329PubMedGoogle Scholar
  65. Nougarede, A. 1967Experimental cytology of the shoot apical cells during vegetative growth and floweringInt. Rev. Cytol.21203315PubMedCrossRefGoogle Scholar
  66. Noubhani, A., Bunoust, O., Rigoulet, M., Thevelein, J.M. 2000Reconstitution of ethanolic fermentation in permeabilised spheroplasts of wild type and trehalose 6-phosphate synthase mutants of the yeast Saccharomyces cerevisiae Eur. J. Biochem.26745664576PubMedCrossRefGoogle Scholar
  67. Nurse, P. 1990Universal control mechanisms regulating onset of mitosisNature344503508PubMedCrossRefGoogle Scholar
  68. Orchard, C.B., Siciliano, I, Sorrell, D.A., Marchbank, A., Rogers, H.J., Francis, D., Herbert, R.J., Suchomelova, P., Lipavska, H., Azmi, A., Onckelen, H. 2005Tobacco BY-2 cells expressing fission yeast cdc25 bypass a G2/M block on the cell cyclePlant J.44290299PubMedCrossRefGoogle Scholar
  69. Parfitt, D., Herbert, R.J, Rogers, H.J., Francis, D. 2004Differential expression of putative floral genes in Pharbitis nil shoot apices cultured on glucose compared with sucroseJ. Exp. Bot.5521692177PubMedCrossRefGoogle Scholar
  70. Pien, S., Wyrzykowska, J., Fleming, A.J. 2001Novel marker genes for early leaf development indicate spatial regulation of carbohydrate metabolism within the apical meristemPlant J.25663674PubMedCrossRefGoogle Scholar
  71. Price, J., Laxmi, A., St Martin, S.K., Jang, J.C. 2004Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis Plant Cell1621282150PubMedCrossRefGoogle Scholar
  72. Purcell, P.C., Smith, A.M., Halford, N.G. 1998Antisense expression of a sucrose nonfermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leavesPlant J.14195202CrossRefGoogle Scholar
  73. Riou-Khamlichi, C., Menges, M., Healy, J.M.S., Murray, J.A.H. 2000Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expressionMol. Cell Biol.2045134521PubMedCrossRefGoogle Scholar
  74. Rolland, F., Winderickx, J., Thevelein, J.M. 2001Glucose-sensing mechanisms in eukaryotic cellsTrends Biochem. Sci.26310317PubMedCrossRefGoogle Scholar
  75. Rook, F., Bevan, M.W. 2003G enetic approaches to understanding sugar-response pathwaysJ. Exp. Bot.54495501PubMedCrossRefGoogle Scholar
  76. Rook, F., Corke, F., Card, R., Munz, G., Smith, C., Bevan, M.W. 2001Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signallingPlant J.26421433PubMedCrossRefGoogle Scholar
  77. Russell, P., Nurse, P. 1986cdc25+ functions as an inducer in the mitotic control of fission yeastCell45145153PubMedCrossRefGoogle Scholar
  78. Russell, P., Nurse, P. 1987aNegative regulation of mitosis by wee1+, a gene encoding a protein kinase homologCell49559567CrossRefGoogle Scholar
  79. Russell, P., Nurse, P. 1987bThe mitotic inducer nim1+, a gene encoding a protein kinase homologueCell49559567CrossRefGoogle Scholar
  80. Schluepmann, H., Pellny, T., Dijken, A., Smeekens, S., Paul, M. 2003Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana Proc. Natl. Acad. Sci. USA10068496854PubMedCrossRefGoogle Scholar
  81. Schoof, H., Lenhard, M., Haeker, A., Mayer, K.F., Jurgens, G., Laux, T. 2000The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genesCell100635644PubMedCrossRefGoogle Scholar
  82. Schultz, E., Haughn, G. 1991 LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis Plant Cell3771781PubMedCrossRefGoogle Scholar
  83. Sheen, J. 1990Metabolic repression of transcription in higher plantsPlant Cell.210271038PubMedCrossRefGoogle Scholar
  84. Smeekens, S. 2000Sugar-induced signal transduction in plantsAnn. Rev. Plant Physiol. Plant Mol. Biol.514981CrossRefGoogle Scholar
  85. Sorrell, D.A., Marchbank, A., McMahon, K., Dickinson, J.R., Rogers, H.J., Francis, D. 2002A WEE1 homologue from Arabidopsis thaliana Planta215518522PubMedCrossRefGoogle Scholar
  86. Sorrell, D.A., Chrimes, D., Rogers, H.J., Dickinson, J.R., Francis, D. 2005The Arabidopsis CDC25 induces a short cell length when overexpressed in fission yeast; evidence for cell cycle functionNew Phytol.165425428PubMedCrossRefGoogle Scholar
  87. Sreenivasan, A., Kellogg, D. 1999The Elm1 Kinase Functions in a Mitotic Signaling Network in Budding YeastMol. Cell. Biol.1979837994PubMedGoogle Scholar
  88. Sugden, C., Crawford, R.M., Halford, N.G., Hardie, D.G. 1999.Regulation of spinach SNF1-related (SnRK1) kinases by protein kinases and phosphatases is associated with phosphorylation of the T loop and is regulated by 5'-AMPPlant J.19433439PubMedCrossRefGoogle Scholar
  89. Tanaka, S., Nojima, H. 1996Nik1, a Nim1-like protein kinase of S. cerevisiae, interacts with the Cdc28 complex and regulates cell cycle progressionGenes Cells1905921PubMedCrossRefGoogle Scholar
  90. Thevelein, J., Hohmann, S. 1995Trehalose synthase: guard to the gate of glycolysis in yeast?Trends Biochem. Sci.20310PubMedCrossRefGoogle Scholar
  91. Thompson-Jaeger, S., Francois, J., Gaughran, J.P., Tatchell, K. 1991Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathwayGenetics12697706Google Scholar
  92. Thompson, , MacLeod, R.D. 1981Lateral root anlage development in excised roots of Vicia faba L., Pisum sativum L., Zea mays L. and Phsseolus vulgaris LAnn. Bot.47 583594Google Scholar
  93. Tiessen, A., Prescha, K., Branscheid, A., Palacios, N., McKibbin, R., Halford, N.G., Geigenberger, P. 2003Evidence that SNF1 related kinase and hexokinase are involved in separate sugar signalling pathways modulating posttranslational redox activation of ADP-glucose pyrophosphorylase in potato tubersPlant J.35490500PubMedCrossRefGoogle Scholar
  94. Toroser, D., Plaut, Z., Huber, S.C. 2000Regulation of a plant SNF1-related protein kinase by glucose-6-phosphatePlant Physiol.123403411PubMedCrossRefGoogle Scholar
  95. Tran Than Van, K. 1981Control of morphogenesis in in vitro culturesAnn. Rev. Plant Physiol.32291311CrossRefGoogle Scholar
  96. Van’t Hof, J. 1966Experimental control of cell division in higher plantsAm. J. Bot.53970976CrossRefGoogle Scholar
  97. Van’t Hof, J., Webster,  1973The regulation of cell division in higher plantsBrook. Symp.25152165Google Scholar
  98. Veit, B. 2004Determination of cell fate in apical meristemsCurr. Opin. Plant Biol.75764PubMedCrossRefGoogle Scholar
  99. Vernoux, T, Autran, D, Traas, J. 2000Developmental control of cell division patterns in the shoot apexPlant Mol. Biol.43569581PubMedCrossRefGoogle Scholar
  100. Vernoux, T., Benfey, P.N. 2005Signals that regulate stem cell activity during plant developmentCurr. Opin. Genet. Develop.15388394CrossRefGoogle Scholar
  101. Wang, H., Zhou, Y., Gilmer, S., Whitwell, S., Fowke, L.C. 2000Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphologyPlant J.24613623PubMedCrossRefGoogle Scholar
  102. Wang W., , Chen, X. 2004HUA ENHANCER3 reveals a role for a cyclin-dependent protein kinase in the specification of floral organ identity in Arabidopsis Development13131473156PubMedCrossRefGoogle Scholar
  103. Weber, H., Buchner, P., Borisjuk, L., Wobus, U. 1996Sucrose metabolism during cotyledon development of Vicia faba L. is controlled by the concerted action of both sucrose phosphate synthase and sucrose synthase: expression patterns, metabolic regulation and implications for seed developmentPlant J.9 841850PubMedCrossRefGoogle Scholar
  104. Weigel, D., Meyerowitz, E.M. 1993Activation of floral homeotic genes in Arabidopsis Science26117231726PubMedGoogle Scholar
  105. Wingler, A., Schaewen, A., Leegood, R.C., Lea, P.J., Quick, W.P. 1998Regulation of leaf senescence by cytokinin, sugars and light. Effects on NADH-dependent hdroxypyruvate reductasePlant Physiol.116329335CrossRefGoogle Scholar
  106. Wu, X., Dabi, T., Weigel, D. 2005Requirement of a homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenanceCurr. Biol.15436440PubMedCrossRefGoogle Scholar
  107. Zhang, Y., Shewry, P.R., Jones, H., Barcelo, P., Lazzeri, P.A., Halford, N.G. 2001Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley. Plant J28 431442PubMedCrossRefGoogle Scholar
  108. Zhou, Y., Wang, H., Gilmer, S., Whitwill, S., Fowke, L.C. 2003aEffects of co-expressing plant CDK inhibitor ICK1 and D-type cyclin genes on plant growth, cell size and ploidy in Arabidopsis thalianaPlanta216604613Google Scholar
  109. Zhou, Y., Li, G., Brandizzi, F., Fowke, L., Wang, H. 2003bThe plant cyclin-dependent kinase inhibitor ICK1 has distinct functional domains for in vivo kinase inhibition, protein stability and nuclear localizationThe Plant J.35476489CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.School of BiosciencesCardiff UniversityCardiffUK
  2. 2.Crop Performance and Improvement, Rothamsted ResearchHarpendenUK

Personalised recommendations