Advertisement

Plant Molecular Biology

, Volume 60, Issue 5, pp 617–631 | Cite as

Expression Profiles of 10,422 Genes at Early Stage of Low Nitrogen Stress in Rice Assayed using a cDNA Microarray

  • Xingming Lian
  • Shiping Wang
  • Jianwei Zhang
  • Qi Feng
  • Lida Zhang
  • Danlin Fan
  • Xianghua Li
  • Dejun Yuan
  • Bin Han
  • Qifa Zhang
Article

Abstract

Development of crop varieties with high nitrogen use efficiency (NUE) is imperative for sustainable agriculture. Understanding how plant genes respond to low N stress is essential for formulating approaches to manipulating genes for improving NUE. In this study we analyzed the expression profiles of an indica rice cultivar Minghui 63 at seedling stage at 20 min, 1 and 2 h after low N stress with the normal N as the control, using a microarray of 11,494 rice ESTs representing 10,422 unique genes. While no significant difference was detected in the leaf tissue, a total of 471 ESTs were detected as responsive to low N stress in the root tissue with 115 ESTs showing up-regulation and 358 ESTs showing down-regulation. The analysis of expression profiles after low N stress identified following patterns: (1) the genes involved in photosynthesis and energy metabolism were down-regulated rapidly; (2) many of the genes involved in early responses to biotic and abiotic stresses were up-regulated while many other stress responsive genes were down-regulated; (3) regulatory genes including transcription factors and ones involved in signal transduction were both up- and down-regulated; and (4) the genes known to be involved in N uptake and assimilation showed little response to the low N stress. The challenges for future studies are to characterize the functional roles of the low N stress responsive genes in N metabolisms, including the large number of genes presently with unknown functions.

Keywords

cDNA chip ESTs nitrogen use efficiency (NUE) Oryza sativa

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. Allen, R.D. 1995Dissection of oxidative stress tolerance using transgenic plantsPlant Physiol.10710491054PubMedGoogle Scholar
  2. Bernier, G., Havelange, A., Houssa, C., Petitjean, A., Lejeune, P. 1993Physiological signals that induce floweringPlant Cell.511471155CrossRefPubMedGoogle Scholar
  3. Buchanan-Wollaston, V. 1994Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus Plant Physiol.105839846CrossRefPubMedGoogle Scholar
  4. Campbell, W.H. 1988Nitrate reductase and its role in nitrate assimilation in plantsPhysiol. Plant.74214219Google Scholar
  5. Campbell, W.H. 1999Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiologyAnnu. Rev. Plant Physiol. Plant Mol. Biol.50277303CrossRefPubMedGoogle Scholar
  6. Chen, W., Provart, N.J., Glazebrook, J., Katagiri, F., Chang, H.S., Eulgem, T., Mauch, F., Luan, S., Zou, G., Whitham, S.A.,  et al. 2002Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stressesPlant Cell.14559574CrossRefPubMedGoogle Scholar
  7. Chu, Z.H., Peng, K.M., Zhang, L.D., Zhou, B., Wei, J., Wang, S.P. 2003Construction and characterization of a normalized whole-life-cycle cDNA library of riceChinese Sci. Bull.48229235CrossRefGoogle Scholar
  8. Crawford, N.M., Glass, A.D.M. 1998Molecular and physiological aspects of nitrate uptake in plantsTrends Plant Sci.3389395CrossRefGoogle Scholar
  9. Dixon, R.A., Lamb, C.J. 1990Molecular communications in interactions between plants and microbial pathogensAnnu. Rev. Plant Physiol. Plant Mol. Biol.41339367CrossRefGoogle Scholar
  10. Dudoit, S., Yang, Y.H., Callow, M.J., Speed, T.P. 2002Statistical methods for identifying differential expressed genes in replicated cDNA microarray experimentsStatistical Sinica.12111139Google Scholar
  11. Feinberg, A.P., Vogelstein, B. 1983A technique for radiolabelling DNA restriction fragment length polymorphisms to high specific activityAnal. Biochem.132613CrossRefPubMedGoogle Scholar
  12. Feng, Q., Zhang, Y.J., Hao, P.,  et al. 2002Sequence and analysis of rice chromosome 4Nature.420316320CrossRefPubMedGoogle Scholar
  13. Forde, B.G. 2000Nitrate transporters in plants: structure, function and regulationBiochem. Biophys. Acta.1465219235PubMedGoogle Scholar
  14. Forde, B.G., Clarkson, D.T. 1999Nitrate and ammonium nutrition of plants: physiological and molecular perspectivesAdv. Bot. Res.30190CrossRefGoogle Scholar
  15. Frink, C.R., Waggoner, P.E., Ausubel, J.H. 1999Nitrogen fertilizer: retrospect and prospectProc. Natl Acad. Sci. USA.9611751180CrossRefPubMedGoogle Scholar
  16. Galvan, A., Fernandez, E. 2001Eukaryotic nitrate and nitrite transportersCell. Mol. Life Sci.58225233CrossRefPubMedGoogle Scholar
  17. Gazzarini, S., Lejay, L., Gojon, A., Ninnemann, O., Frommer, W.B., VonWire, Á n, N. 1999Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis rootsPlant Cell.11937947CrossRefGoogle Scholar
  18. Gene Ontology Consortium,2001Creating the gene ontology resource: design and implementationGenome Res1114251433CrossRefGoogle Scholar
  19. Geoffroy, P., Legrand, M., Fritig, B. 1990Isolation and characterization of a proteinaceous inhibitor of microbial proteinases induced during the hypersensitive reaction of tobacco to tobacco mosaic virusMol. Plant-Microbe Interact.3327333PubMedGoogle Scholar
  20. Glass, A.D.M., Brito, D.T., Kaiser, B.N., Kronzucker, H.J., Kumar, A., Okamoto, M., Rawat, S.R., Siddiqi, M.Y., Silim, S.M., Vidmar, J.J., Zhuo, D. 2001Nitrogen transport in plants, with an emphasis on the regulation of fluxes to match plant demandJ. Plant Nutr. Soil Sci.164199207CrossRefGoogle Scholar
  21. Granato, T.C., Raper, C.D. 1989Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrateJ. Exp. Bot.40263275PubMedGoogle Scholar
  22. Hammond, J.P., Bennett, M.J., Bowen, H.C., Broadley, M.R., Eastwood, D.C., May, T.M., Rahn, C., Swarup, R., Woolaway, K.E., White, P.J. 2003Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plantsPlant Physiol.132578596CrossRefPubMedGoogle Scholar
  23. Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A., Kay, S.A. 2000Orchestrated transcription of key pathways in Arabidopsis by the circadian clockScience29021102113CrossRefPubMedGoogle Scholar
  24. Hill, C.S., Treisman, R. 1995Transcriptional regulation by extracellular signals: mechanisms and specificityCell80199211CrossRefPubMedGoogle Scholar
  25. Himanen, K., Vuylsteke, M., Vanneste, S., Vercruysse, S., Boucheron, E., Alard, P., Chriqui, D., Montagu, M.V., Inze, D., Beeckman, T. 2004Transcript profiling of early lateral root initiationProc. Natl. Acad. Sci. USA.10151465151CrossRefPubMedGoogle Scholar
  26. Hirano, K., Teraoka, T., Yamanaka, H., Harashima, A., Kunisaki, A., Takahashi, H., Hosokawa, D. 2000Novel mannose-binding rice lectin composed of some isolectins and its relation to a stress-inducible salt genePlant Cell Physiol.41258267PubMedGoogle Scholar
  27. Hirel, B., Lea, P.J. 2001Ammonia assimilationLea, P.J.Morot-Gaudry, J.-F. eds. Plant NitrogenSpringer-VerlagBerlin7999Google Scholar
  28. Howitt, S.M., Udvardi, M.K. 2000Structure, function and regulation of ammonium transporters in plantsBiochem. Biophys. Acta.1465152170PubMedGoogle Scholar
  29. Hunter, T., Karin, M. 1992The regulation of transcription by phosphorylationCell.70375387CrossRefPubMedGoogle Scholar
  30. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F. 1998 Arabidopsis CBF1 overexpression induces COR genes and enhances freezing toleranceScience280104106CrossRefPubMedGoogle Scholar
  31. Kaiser, W.M., Kandlbinder, A., Stoimenova, M., Glaab, J. 2000Discrepancy between nitrate reduction rates in intact leaves and nitrate reductase activity in leaf extracts: what limits nitrate reduction in situ?Planta210801807CrossRefPubMedGoogle Scholar
  32. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K. 1999Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factorNat. Biotechnol.17287291CrossRefPubMedGoogle Scholar
  33. Kauffmann, S., Legrand, M., Geoffroy, P., Fritig, B. 1987Biological function of “pathogenesis-related” proteins: four proteins of tobacco have 1, 3-P-glucanase activityEMBO J.632093212PubMedGoogle Scholar
  34. Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., Bohnert, H. 2001Gene expression profiles during the initial phase of salt stress in ricePlant Cell.13889905CrossRefPubMedGoogle Scholar
  35. Kikuchi, S., Satoh, K., Nagata, T.,  et al. 2003Collection, mapping, and annotation of over 28,000 cDNA clones from japonica riceScience.301376379CrossRefPubMedGoogle Scholar
  36. Lam, H.M., Coschigano, K.T., Oliveira, I.C., Melooliveira, R., Coruzzi, G.M. 1996The molecular-genetics of nitrogen assimilation into amino acids in higher plantsAnnu. Rev. Plant Physiol. Plant Mol. Biol.47569593CrossRefPubMedGoogle Scholar
  37. Legrand, M., Kauffmann, S., Geoffroy, P., Fritig, B. 1987Biological function of pathogenesis-related proteins: four tobacco pathogenesis-related proteins are chitinasesProc. Natl. Acad. Sci. USA.8467506754PubMedGoogle Scholar
  38. Linthorst, H.J.M. 1991Pathogenesis-related proteins of plantsCrit. Rev. Plant Sci.10113150Google Scholar
  39. Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L., Dietrich, R.A. 2000The transcriptome of Arabidopsis thaliana during systemic acquired resistanceNat. Genet.26403410CrossRefPubMedGoogle Scholar
  40. Ma, L., Gao, Y., Qu, L., Chen, Z., Li, J., Zhao, H., Deng, X.W. 2002Genomic evidence for COP1 as repressor of light regulated gene expression and development in Arabidopsis Plant Cell.1423832398CrossRefPubMedGoogle Scholar
  41. Marschner, H., Römheld, V., Horst, W.J., Martin, P. 1986Root-induced changes in the rhizosphere: importance of the mineral nutrition in plantsZ. Pflanzenernähr. Bodenk.149441456Google Scholar
  42. Martin, T., Oswald, O., Graham, I.A. 2002 Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availabilityPlant Physiol.128472481CrossRefPubMedGoogle Scholar
  43. Mittler, R. 2002Oxidative stress, antioxidants and stress toleranceTrends Plant Sci.7405410CrossRefPubMedGoogle Scholar
  44. Mori, H., Higo, K., Higo, H., Minobe, Y., Matsui, H., Chiba, S. 1992Nucleotide and derived amino acid sequence of a catalase cDNA isolated from rice immature seedsPlant Mol. Biol.18973976CrossRefPubMedGoogle Scholar
  45. Morita, S., Tasaka, M., Fujisawa, H., Ushimaru, T., Tsuji, H. 1994A cDNA clone encoding a rice catalase isozymePlant Physiol.10510151016CrossRefPubMedGoogle Scholar
  46. Nanjo, T., Kobayashi, M., Yoshiba, Y., Yukika, S., Keishiro, W., Tsukaya, H., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. 1999Biological functions of proline in morphogenesis and osotolerance revealed in antisense transgenic Arabidopsis thaliana Plant J.18185193CrossRefPubMedGoogle Scholar
  47. Ni, W., Trelease, R.N. 1991Post-transcriptional regulation of catalase isozyme expression in cotton seedsPlant Cell.3737744CrossRefPubMedGoogle Scholar
  48. Okuma, E., Soeda, K., Tada, M., Murata, Y. 2000Exogenous proline mitigates the inhibition of growth of Nicotiana tabacum cultured cells under saline conditionsSoil Sci. Plant Nutr.46257263Google Scholar
  49. Palenchar, P.M., Kouranov, A., Lejay, L.V., Coruzzi, G.M. 2004Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plantsGenome Biol.5R91PubMedGoogle Scholar
  50. Perozich, J., Nicholas, H., Lindahl, R., Hempel, J.,  et al. 1999The big book of aldehyde dehydrogenase sequences. An overview of the extended familyWeiner, H. eds. Advances in Experimental Medicine and Biology (Volume 463)Kluwer Academic/Plenum PublishersNew York, USA17Google Scholar
  51. Price, J., Laxmi, A., St Martin, S.K., Jang, J.C. 2004Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis Plant Cell.1621282150CrossRefPubMedGoogle Scholar
  52. Redinbaugh, M.G., Campbell, W.H. 1998Nitrate regulation of the oxidative pentose phosphate pathway in maize (Zea mays L.) root plastids: Induction of 6-phosphogluconate dehydrogenase activity, protein and transcript levelsPlant Sci.134129140CrossRefGoogle Scholar
  53. Redinbaugh, M.G., Wadsworth, G.J., Scandalios, J.G. 1988Characterization of catalase transcript and their differential expression in maizeBiochem. Biophys. Acta.951104116PubMedGoogle Scholar
  54. Scandalios, J.G. 1990Response of plant antioxidant defence genes to environmental stressAdv. Genet.28141PubMedCrossRefGoogle Scholar
  55. Sasaki, T., Matsumoto, T., Yamamoto, K.,  et al. 2002The genome sequence and structure of rice chromosome 1Nature420312316CrossRefPubMedGoogle Scholar
  56. Scheible, W.-R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M.K., Stitt, M. 2004Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, celluar growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogenPlant Physiol.13624832499CrossRefPubMedGoogle Scholar
  57. Schena, M., Shalon, D., Davis, R.W., Brown, P.O. 1995Quantitative monitoring of gene expression patterns with a complimentary DNA microarrayScience270467470PubMedGoogle Scholar
  58. Seki, M., Narusaka, M., Abe, H., Kasuko, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., Shinozaki, K. 2001Monitoring the expression pattern of 1,300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarrayPlant Cell.136172CrossRefPubMedGoogle Scholar
  59. Seki, M., Narusaka, M., Ishida, J.,  et al. 2002Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarrayPlant J.31279292CrossRefPubMedGoogle Scholar
  60. Shin, R., Schachtman, D.P. 2004Hydrogen peroxide mediates plant root cell response to nutrient deprivationProc. Natl. Acad. Sci. USA.10188278832CrossRefPubMedGoogle Scholar
  61. Shinozaki, K., Yamaguchi-Shinozaki, K. 2000Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathwaysCurr. Opin. Plant Biol.3217223PubMedGoogle Scholar
  62. Socolow, R.H. 1999Nitrogen management and the future of food: lessons from the management of energy and carbonProc. Natl. Acad. Sci. USA.9660016008CrossRefPubMedGoogle Scholar
  63. Steffens, J.C. 1990The heavy metal-binding peptides of plantsAnnu. Rev. Plant Mo1. Biol.41553575Google Scholar
  64. Stitt, M. 1999Nitrate regulation of metabolism and growthCurr. Opin. Plant Biol.2178186CrossRefPubMedGoogle Scholar
  65. Sunkar, R., Bartels, D., Kirch, H.H. 2003Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerancePlant J.35452464CrossRefPubMedGoogle Scholar
  66. Tsai, C.-A., Chen, Y.-J., Chen, J.J. 2003Testing for differentially expressed genes with microarray dataNucleic Acids Res.31N9CrossRefGoogle Scholar
  67. Tepperman, J.M., Zhu, T., Chang, H.S., Wang, X., Quail, P.H. 2001Multiple transcription-factor genes are early targets of phytochrome A signalingProc. Natl. Acad. Sci. USA.9894379442CrossRefPubMedGoogle Scholar
  68. The Rice Chromosome 10 Sequencing Consortium.2003In-depth view of structure, activity, and evolution of rice chromosome 10Science30015661569CrossRefGoogle Scholar
  69. Treier, U., Fuchs, S., Weber, M., Wakarchuk, W.W., Beck, C.F. 1989Gametic differentiation in Chlamydomonas reinhardtii: light dependence and gene expression patternsArch. Microbiol.152572577CrossRefGoogle Scholar
  70. UNEP1999Global Environment Outlook 2000 United Nations Environment Programme and London EarthscanNairobi, KenyaGoogle Scholar
  71. Leij, M., Smith, S.J., Miller, A.J. 1998Remobilisation of vacuolar stored nitrate in barley roots cellsPlanta2056472CrossRefGoogle Scholar
  72. Wang, R., Guegler, K., Labrie, S.T., Crawford, N.M. 2000Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitratePlant Cell.1214911509CrossRefPubMedGoogle Scholar
  73. Wang, R., Okamoto, M., Xing, X., Crawford, N.M. 2003Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose−6-phosphate, iron, and sulfate metabolismPlant Physiol.132556567CrossRefPubMedGoogle Scholar
  74. Wang, R., Tischner, R., Gutierrez, R.A., Hoffman, M., Xing, X., Chen, M., Coruzzi, G., Crawford, N.M. 2004Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis Plant Physiol.13625122522CrossRefPubMedGoogle Scholar
  75. Werf, A.V.D., Raaimakers, D., Poot, P., Lambers, H. 1988Respiratory energy costs for the maintenance of biomass, for growth and for iron uptake in roots of Carex diandra and Carex acutiformis Physiol. Plant.72483491Google Scholar
  76. Williams, L.E., Miller, A.J. 2001Transporters responsible for the uptake and partitioning of nitrogenous solutesAnnu. Rev. Plant Physiol. Plant Mol. Biol.52659688CrossRefPubMedGoogle Scholar
  77. Whitmarsh, A.J., Davis, R.J. 2000Regulation of transcription factor function by phosphorylationCell. Mol. Life Sci.5711721183CrossRefPubMedGoogle Scholar
  78. Wu, P., Ma, L., Hou, X., Wang, M., Wu, Y., Liu, F., Deng, X.W. 2003Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leavesPlant Physiol.13212601271CrossRefPubMedGoogle Scholar
  79. Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., Somero, G.N. 1982Living with water stress: evolution of osmolyte systemsScience.21712141222PubMedGoogle Scholar
  80. Yoshida, S., Forno, D.A., Cook, J.H., Gomez, K.A. 1976Laboratory Manual for Physiological Studies of Rice3International Rice Research InstituteManilaGoogle Scholar
  81. Zhang, H., Forde, B.G. 2000Regulation of Arabidopsis root development by nitrate availabilityJ. Exp. Bot.515159CrossRefPubMedGoogle Scholar
  82. Zhang, J., Feng, Q., Jin, C., Qiu, D., Zhang, L., Xie, K., Yuan, D., Han, B., Zhang, Q., Wang, S. 2005Features of the expressed sequences revealed by a large-scale analysis of ESTs from a normalized cDNA library of the elite indica rice cultivar Minghui 63Plant J.42772780CrossRefPubMedGoogle Scholar
  83. Zhu, Z. 2000Loss of fertilizer N from plant–soil system and the strategies and techniques for its reduction (in Chinese with English abstract)Soil Environ. Sci.916Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Xingming Lian
    • 1
  • Shiping Wang
    • 1
  • Jianwei Zhang
    • 1
  • Qi Feng
    • 2
  • Lida Zhang
    • 1
  • Danlin Fan
    • 2
  • Xianghua Li
    • 1
  • Dejun Yuan
    • 1
  • Bin Han
    • 2
  • Qifa Zhang
    • 1
  1. 1.National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
  2. 2.National Center for Gene ResearchChinese Academy of SciencesShanghaiChina

Personalised recommendations