Plant Molecular Biology

, Volume 58, Issue 2, pp 177–192 | Cite as

Comprehensive approach to genes involved in cell wall modifications in Arabidopsis thaliana

  • Keiko Imoto
  • Ryusuke Yokoyama
  • Kazuhiko Nishitani


The plant cell wall is of supermolecular architecture, and is composed of various types of heterogeneous polymers. A few thousand enzymes and structural proteins are directly involved in the construction processes, and in the functional aspects of the dynamic architecture in Arabidopsis thaliana. Most of these proteins are encoded by multigene families, and most members within each family share significant similarities in structural features, but often exhibit differing expression profiles and physiological functions. Thus, for the molecular dissection of cell wall dynamics, it is necessary to distinguish individual members within a family of proteins. As a first step towards characterizing the processes involved in cell wall dynamics, we have manufactured a gene-specific 70-mer oligo microarray that consists of 765 genes classified into 30 putative families of proteins that are implicated in the cell wall dynamics of Arabidopsis. By using this array system, we identified several sets of genes that exhibit organ preferential expression profiles. We also identified gene sets that are expressed differentially at certain specific growth stages of the Arabidopsis inflorescence stem. Our results indicate that there is a division of roles among family members within each of the putative cell wall-related gene families.

Key words

Arabidopsis cell wall DNA microarray enzyme gene expression stem 



pectin methyleaterase


reverse transcription-polymerase chain reaction


xyloglucan endotransglucosylase/hydrolase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11103_2005_Article_5344_MOESM1_ESM.doc (101 kb)
Table (DOC 104 KB)


  1. Arabidopsis Genome Initiative 2000. Analysis to the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.CrossRefGoogle Scholar
  2. Ariizumi, T., Amagai, M., Shibata, D., Hatakeyama, K., Watanabe, W. and Toriyama, K. 2002. Comparative study of promoter activity of three anther-specific genes encoding lipid transfer protein, xyloglucan endotransglucosylase/hydrolase and polygalacturonase in transgenic Arabidopsis thaliana. Plant Cell Rep. 21: 90–96.CrossRefGoogle Scholar
  3. Baumberger, N., Steiner, M., Ryser, U., Keller, B. and Ringli, C. 2003. Synergistic interaction of the two paralogous Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development. Plant J. 35: 71–81.CrossRefPubMedGoogle Scholar
  4. Bourquin, V., Nishikubo, N., Abe, H., Brumer, H., Denmen, S., Eklund, M., Christiermin, M., Teeri, T.T., Sundberg, B. and Mellerowicz, E.J. 2002. Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues. Plant Cell 14: 3073–3088.CrossRefPubMedGoogle Scholar
  5. Brownleader, M.D., Hopkins, J., Mobasheri, A., Dey, P.M., Jackson, P. and Trevan, M. 2000. Role of extensin peroxidase in tomato (Lycopersicon esculentum Mill) cells in suspension culture. Planta 191: 457–469.Google Scholar
  6. Buell, C.R. 2002. Current status of the sequence of the rice genome and prospects for finishing the first monocot genome. Plant Physiol. 130: 1585–1586.CrossRefPubMedGoogle Scholar
  7. Carpin, S., Crèvecoeur, M., Greppin, H. and Penel, C. 1997. Molecular cloning and tissue-specific expression of an anionic peroxidase in zucchini. Plant Physiol. 120: 799–810.CrossRefGoogle Scholar
  8. Cho, H.T. and Cosgrove, D.J. 2002. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14: 3237–3253.CrossRefPubMedGoogle Scholar
  9. Cho, H.T. and Kende, H. 1997. Expression of expansin genes is correlated with growth in deepwater Rice. Plant Cell 9: 1661–1671.CrossRefPubMedGoogle Scholar
  10. Choi, D., Lee, Y., Cho, H.T. and Kende, H. 2003. Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell 15: 1386–1398.CrossRefPubMedGoogle Scholar
  11. Córdoba-Pedregosa, M.d.C, González-Reyes, J.A., Canadillas M.d.S., Navas, P. and Cordoba, F. 1996. Role of apoplastic and cell-wall peroxidases on the stimulation of root elongation by ascorbate. Plant Physiol. 112: 1119–1125.PubMedGoogle Scholar
  12. Córdoba-Pedregosa M.d.C, Córdoba, F., Villalba, J.M. and González-Reyes, J.A. 2003. Zonal changes in ascorbate and hydrogen peroxide contents, peroxidase, and ascorbate-related enzyme activities in onion roots. Plant Physiol. 131: 697–706.CrossRefGoogle Scholar
  13. Coutinho, P.M. and Henrissat, B. 1999. Carbohydrate-active enzymes: an integrated database approach. In: H.J. Glbert, G. Davies, B. Henrissat and B. Svensson (Eds.), “Recent Advances in Carbohydrate Bioengineering”, The Royal Society of Chemistry. Cambridge, pp. 3–12.Google Scholar
  14. de la Torre, F., Sampedro, J., Zarra, I. and Revilla, G. 2002. AtFXG1, an Arabidopsis gene encoding α-l-fucosidase active against fucosylated xyloglucan oligosaccharides. Plant Physiol. 128: 247–255.CrossRefGoogle Scholar
  15. de Oliveira, D.E., Seurinck, J., Inze, D., Montagu, M.V. and Botterman, J. 2000. Differential expression of five Arabidopsis genes encoding glycine-rich proteins. Plant Cell 2: 427–436.CrossRefGoogle Scholar
  16. Dong, X., Mindrinos, M., Daviqb, K.R. and Asubel, F.M. 1991. Induction of Arabidopsis defense genes by virulent and avirulent Psudomonas syringae strains and by a cloned avirulence gene. Plant Cell 65: 57–60.Google Scholar
  17. Faik, A., Price, N.J., Raikhel, N.V. and Keegstra, K. 2002. An Arabidopsis gene encoding an α-xylosyltransferase involved in XyG biosynthesis. Proc. Natl. Acad. Sci. USA 99: 7797–7802.CrossRefPubMedGoogle Scholar
  18. Fry, F.C. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu. Rev. Plant. Physiol. 37: 165–186.CrossRefGoogle Scholar
  19. He, Z.H., Cheeseman, I., He, D. and Kohorn, B.D. 1999. A cluster of five cell wall-associated receptor kinase genes, Wak1–5, are expressed in specific organs of Arabidopsis. Plant. Mol. Biol. 39: 1189–1196.CrossRefPubMedGoogle Scholar
  20. Holland, N., Holland, D., Helentjaris, T., Dhugga, K.S., Xoconostle-Cazares, B. and Delmer, D.P. 2000. A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol. 123: 1313–1323.CrossRefPubMedGoogle Scholar
  21. Hong, Z., Zhang, Z., Olson, J.M. and Verma, D.P.S. 2001. A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell 13: 769–780.CrossRefPubMedGoogle Scholar
  22. Hyodo, H., Yamakawa, S., Takeda, Y., Tsuduki, M., Yokota, A., Nishitani, K. and Kohchi, T. 2003. Active gene expression of a xyloglucan endotransglucosylase/hydrolase gene, XTH9, in inflorescence apices is related to cell elongation in Arabidopsis thaliana. Plant Mol. Biol. 52: 473–482.CrossRefPubMedGoogle Scholar
  23. Johnson K.L., Jones B.J., Schultz C.J. and Bacic A. 2003. Nonenzyme cell wall (glyco)proteins. In: J.K.C. Rose (Ed.) The Plant Cell Wall (ISBN 0-8493-2811-X) CRC Press LLC, FL, USA, pp. 111–154.Google Scholar
  24. Keegstra, K. and Raikhel, N. 2001. Plant glycosyltransferases. Curr. Opin. Plant Biol. 4: 219–24.CrossRefPubMedGoogle Scholar
  25. Li, Y., Darley, C.P., Ongaro, V., Fleming, A., Schipper, O., Baldauf, S.L. and McQueen-Mason, S.J. 2002. Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol. 128: 854–864.CrossRefPubMedGoogle Scholar
  26. Llorente, F., Lopez-Cobollo, R.M., Catalá, R., Martínez-Zapater, J.M. and Salinas, J. 2002. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J. 32: 13–24.CrossRefPubMedGoogle Scholar
  27. McQueen-Mason, S., Durachko, D.M. and Cosgrove, D.J. 1992. Two endogenous proteins that induce cell wall extension in plants. Plant Cell. 4: 1425–1433.CrossRefPubMedGoogle Scholar
  28. Mayfield, J.A., Fiebig, A., Johnstone, S.E. and Preuss, D. 2001. Gene families from the Arabidopsis thaliana pollen coat proteome. Nature 292: 2482–2485.Google Scholar
  29. Micheli, F. 2001. Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trend Plant Sci. 6: 414–419.CrossRefGoogle Scholar
  30. Mølhøj, M., Pagant, S. and Höfte, H. 2002. Towards understanding the role of membrane-bound endo-β-1,4-glucanases in cellulose biosynthesis. Plant Cell Physiol. 43: 1399–1406.CrossRefPubMedGoogle Scholar
  31. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473–496.CrossRefGoogle Scholar
  32. Nakamura Yokoyama Tomita, T. R. E. and Nishitani, K 2003. Two azuki bean XTH genes, VaXTH1 and VaXTH2, with similar tissue specific expression profiles, are differentlty regulated by auxin. Plant. Cell Physiol. 44: 16–24.CrossRefGoogle Scholar
  33. Nicol, F., His, I., Jauneau, A., Vernhettes, S., Canut, H. and Hofte, H 1998. A plasma membrane-bound putative endo-1,4-β-d-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17: 5563–5576:.CrossRefPubMedGoogle Scholar
  34. Nishitani, K. and Tominaga, R. 1992. Endoxyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J. Biol. Chem. 267: 21058–21064.PubMedGoogle Scholar
  35. Ori, N., Sessa, G., Lotan, T., Himmelhoch, S. and Fluhr, R. 1990. A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related protein superclass. EMBO J. 9: 3429–3436.PubMedGoogle Scholar
  36. Park, Y.W., Tominaga, R., Sugiyama, J., Furuta, Y., Tanimoto, E., Samejima, M., Sakai, F. and Hayashi, T. 2003. Enhancement of growth by expression of poplar cellulase in Arabidopsis thaliana. Plant J. 33: 1099–1106:.CrossRefPubMedGoogle Scholar
  37. Peterson, M., Sander, L., Child, R., Onckelen, H. Van, Ulvskov, P. and Borkhardt, B. 1996. Isolation and characterization of a pod dehiscence zone-specific polygalacturonase from Brassica napus.. Plant Mol. Biol. 31: 517–527.CrossRefGoogle Scholar
  38. Price, N.J., Pinheiro, C., Soares, CM., Ashford, D.A., Ricardo, C.P. and Jackson, P.A. 2003. A biochemical and molecular characterization of LEP1, an extensin peroxidase from lupin. J. Biol. Chem. 278: 41389–41399.CrossRefPubMedGoogle Scholar
  39. Rose, J.K.C., Braam, J., Fry, S.C and Nishitani, K 2002. The XTH family of enzymes involved in xyloglucan endotrans-glucosylase and endohydrolysis, current perspectives and new unifying nomenclature. Plant Cell Physiol. 43: 1421–1435.CrossRefPubMedGoogle Scholar
  40. Samuels, A.L., Giddings, T.H. Jr. and Staehelin, A.L 1995. Cytokinesis in Tobacco BY-2 and Root Tip Cells: A new model of cell plate formation in higher plants. J. Cell. Biol. 130: 1345–1357.CrossRefPubMedGoogle Scholar
  41. Sampedro, J., Sieiro, C., Revilla, G., Gonzøaez-Villa, T. and Zarra, I. 2001. Cloning and expression pattern of a gene encoding an α-xylosidase active against xyloglucan oligosaccharides from Arabidopsis. Plant Physiol. 126: 910–920.CrossRefPubMedGoogle Scholar
  42. Sander, L., Child, R., Ulvskov, P., Albrechtsen, M. and Borkhardt, B. 2001. Analysis of dehiscence zone endopolygalacturonase in oil seed rape (Brassica napus) and Arabidopsis thaliana: evidence for roles in cell separation in dehiscence and abscission zones, and in stylar tissues during pollen tube growth. Plant Mol. Biol. 46: 469–479.CrossRefPubMedGoogle Scholar
  43. Sarria, R., Wagner, T.A., O’Neill, M.A., Faik, A., Wilkerson, C.G., Keegstra, K. and Raikhel, N.V. 2001. Characterization of a family of Arabidopsis genes related to xyloglucan fucosyltransferase 1. Plant Physiol 127: 1595–1606.CrossRefPubMedGoogle Scholar
  44. Schultz, C.J., Johnson, K.L., Currie, G. and Bacic, A. 2000. The Classical arabinogalactan protein gene family of Arabidopsis. Plant Cell 12: 1751–1768.CrossRefPubMedGoogle Scholar
  45. Schultz, C.J., Rumsewicz, M.P., Johnson, K.L., Jones, B.J., Gaspar, Y.M. and Basic, A. 2002. Using genomic resources to guide research directions: The arabinogalactan protein gene family as a test case. Plant Physiol. 129: 1448–1463.CrossRefPubMedGoogle Scholar
  46. Shani, Z., Dekel, M., Tsabary, G. and Shoseyov, O. 1997. Cloning and characterization of elongation specific endo-1,4-β-glucanase (cel1) from Arabidopsis thaliana. Plant Mol. Biol. 34: 837–842.CrossRefPubMedGoogle Scholar
  47. Taylor, N.G., Scheible, W.R., Cutler, S., Somerville, C.R. and Turner, S.R. 1999. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11: 769–780.CrossRefPubMedGoogle Scholar
  48. Taylor, N.G., Laurie, S. and Turner, S.R. 2000. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12: 2529–2540.CrossRefPubMedGoogle Scholar
  49. Taylor, N.G., Howells, R.M., Huttly, A.K., Vickers, K. and Turner, S.R. 2003. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl. Acad. Sci. USA 100: 1450–1455.CrossRefPubMedGoogle Scholar
  50. Tsukaya, H., Osguma, T., Naito, S., Chino, M. and Komeda, Y. 1991. Sugar-dependent expression of the CHS-A gene for chalcone synthase from Petunia in transgenic Arabidopsis.. Plant Physiol 97: 1414–1421.CrossRefPubMedGoogle Scholar
  51. Vissenberg, K., Oyama, M., Osato, Y., Yokoyama, R., Verbelen, J-P and Nishitani, K. 2005. Differential expression of AtXTH17, -18, -19 and -20 genes in Arabidopsis roots. Physiological roles in specification in cell wall construction. Plant Cell Physiol. 46: 192–200.CrossRefPubMedGoogle Scholar
  52. Wolf, S., Grsic-Rausch, S., Rausch, T. and Greiner, S. 2003. Identification of pollen-expressed pectin methylesterase inhibitors in Arabidopsis. FEBS Lett. 555: 551–555.CrossRefPubMedGoogle Scholar
  53. Yokoyama, R. and Nishitani, K. 2001a. A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol. 42: 1025–1033.CrossRefPubMedGoogle Scholar
  54. Yokoyama, R. and Nishitani, K. 2001b. Endoxyloglucan transferase is localized both in the cell plate and in the secretory pathway destined for the apoplast in tobacco cells. Plant Cell Physiol. 42: 292–300.CrossRefPubMedGoogle Scholar
  55. Yokoyama, R. and Nishitani, K. 2004. Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis.. Plant Cell Physiol. 45: 1111–1121.CrossRefPubMedGoogle Scholar
  56. Yokoyama, R., Rose, J.K.C. and Nishitani, K. 2004. A surprising diversity and abundance of XTHs (xyloglucan endotransglucosylase/hydrolases) in rice: classification and expression analysis. Plant Physiol. 134: 1088–1099.CrossRefPubMedGoogle Scholar
  57. Zhang, Y., Brown, G., Whetten, R., Loopstra, C.A., Neale, D., Kieliszewski, M.J. and Sederoff, R.R 2003. An arabinogalactan protein associated with secondary cell wall formation in, differentiating xylem of loblolly pine. Plant Mol. Biol. 52: 91–102.CrossRefPubMedGoogle Scholar
  58. Zhong, R.Q., Kays, S.J., Schroeder, B.P. and Ye, Z.H. 2002. Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell 14: 165–179.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Keiko Imoto
    • 1
  • Ryusuke Yokoyama
    • 1
  • Kazuhiko Nishitani
    • 1
  1. 1.Department of Developmental Biology and NeurosciencesGraduate School of Life Sciences Tohoku UniversitySendaiJapan

Personalised recommendations