Plant Molecular Biology

, Volume 58, Issue 1, pp 41–51 | Cite as

Mutational and expression analysis of ELIP1 and ELIP2 in Arabidopsis thaliana

  • Anna Paola Casazza
  • Silvia Rossini
  • Mario G. Rosso
  • Carlo Soave


Plants exposed to photoinhibitory conditions respond by accumulation of the early light-induced proteins (ELIPs) with a potential photoprotective function. In Arabidopsis thaliana two genes (Elip1 and Elip2) encode for two ELIP proteins: evidence exists that the two genes are differentially regulated but their precise function is unclear. Mutants null for one or the other Elip gene can help in elucidating ELIPs role and here we describe the expression profile of ELIP1 and ELIP2, and the phenotype of such null mutants. Both ELIPs accumulate during greening of etiolated seedlings and in mature plants the transcripts fluctuate diurnally without protein accumulation. Steady-state transcript level of both genes increases in response to high light with transcription of Elip1 much more sensitive than that of Elip2 to increasing irradiation at 22 °C. At 4 °C instead Elip2 is strongly transcribed even at growing light. Furthermore, only ELIP1 accumulates under high light at 22 °C while both proteins accumulate at 4 °C. These results indicate the existence of a differential regulation of ELIPs expression in response to light or chilling stress with mechanisms active either at transcriptional and post-transcriptional level. Phenotypically, the mutants behave as the wild type as far as sensitivity to light- or light and cold-induced short-term photoinhibition, while both ELIPs are necessary to ensure a high rate of chlorophyll accumulation during deetiolation in continuous high light.


Arabidopsis thaliana chloroplast elip1 and elip2 mutants gene expression light and cold stress 



abscisic acid


chlorophyll a/b-binding protein


chlorophyll a/b ratio




early light inducible protein


glutathione S-transferase


high light


left border


light-harvesting complex


low light


polymerase chain reaction


reverse transcriptional-PCR


sodium dodecyl sulfate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamska, I., Scheel, B., Kloppstech, K. 1991Circadian oscillations of nuclear-encoded chloroplast proteins in pea (Pisum sativum)Plant Mol. Biol1710551065Google Scholar
  2. Adamska, I., Kloppstech, K. 1991Evidence for an association of the early light-inducible protein (ELIP) of pea with photosystem IIPlant Mol. Biol16209223Google Scholar
  3. Adamska, I., Kloppstech, K., Ohad, I. 1992aUV light stress induces the synthesis of the early light-inducible protein and prevents its degradationJ. Biol. Chem267/342473224737Google Scholar
  4. Adamska, I., Ohad, I., Kloppstech, K. 1992bSynthesis of the early light-inducible protein is controlled by blue light and related to light stressProc. Natl Acad. Sci. USA8926102613Google Scholar
  5. Adamska, I., Kloppstech, K., Ohad, I. 1993Early light-inducible protein in pea is stable during light stress but is degraded during recovery at low light intensityJ. Biol. Chem268/854385444Google Scholar
  6. Adamska, I., Kloppstech, K. 1994Low temperature increases the abundance of early light-inducible transcript under light stress conditionsJ. Biol. Chem269/483022130226Google Scholar
  7. Adamska, I. 1995Regulation of early light-inducible protein gene expression by blue and red light in etiolated seedlings involves nuclear and plastid factorsPlant Physiol10711671175Google Scholar
  8. Adamska, I., Roobol-Bóza, M., Lindahl, M., Andersson, B. 1999Isolation of pigment-binding early light-inducible proteins from peaEur. J. Biochem260453460Google Scholar
  9. Adamska I., 2001. The Elip family of stress proteins in the thylakoid membranes of Pro- and Eukaryota. In: E-M. Aro, B. Andersson (Eds.), Regulation of Photosynthesis, Kluwer Academic Publishers, 11, pp. 487–505Google Scholar
  10. Andersson, U., Heddad, M., Adamska, I. 2003Light stress-induced one-helix protein of the chlorophyll a/b-binding family associated with photosystem IPlant Physiol132811820Google Scholar
  11. Arnon, D.I. 1949Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgarisPlant Physiol24115Google Scholar
  12. Bei-Paraskevopoulou, T., Kloppstech, K. 1999The expression of early light-inducible proteins (ELIPs) under high-light stress as defense marker in Northern- and Southern European cultivars of barley (Hordeum vulgare)Physiol. Plant106105111Google Scholar
  13. Geuna, J., Hartings, H., Scienza, A. 2000Plant DNA extraction based on grinding by reciprocal shaking of dried tissueAnal. Biochem278228230Google Scholar
  14. Grimm, B., Kloppstech, K. 1987The early light-inducible proteins of barleyEur. J. Biochem167493499Google Scholar
  15. Grimm, B., Kruse, E., Kloppstech, K. 1989Transiently expressed early light-inducible thylakoid proteins share transmembrane domains with light-harvesting chlorophyll binding proteinsPlant Mol. Biol13/5583593Google Scholar
  16. Guseinova, I.N., Suleimanov, S.Y., Zulfugarov, I.S., Aliev, J.A. 2001Assembly of the light-harvesting complexes during plastid developmentJ. Fluor10/3255259Google Scholar
  17. Harari-Steinberg, O., Ohad, I., . Chamovitz, D. A 2001Dissection of the light signal transduction pathways regulating the two early light-induced protein genes in ArabidopsisPlant Physiol127986997Google Scholar
  18. Heddad, M., Adamska, I. 2000Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene familyProc. Natl Acad. Sci. USA97737413746Google Scholar
  19. Hutin, C., Nussaume, L., Moise, N., Moya, I., Kloppstech, K., Havaux, M. 2003Early light-induced proteins protect Arabidopsis from photooxidative stressProc. Natl Acad. Sci. USA100849214926Google Scholar
  20. Kolanus, W., Scharnhorst, C., Kuehne, U., Herzfeld, F. 1987The structure and light-dependent transient expression of a nuclear-encoded chloroplast protein gene from pea (Pisum sativum L.)Mol. Gen. Genet209234239Google Scholar
  21. Król, M., Ivanov, A.G., Jansson, S., Kloppstech, K., Huner, N.P.A. 1999Greening under high light or cold temperature affects level of xantophyll-cycle pigments, early light-inducible proteins, and light-harvesting polypeptides in wild-type barley and the chlorina f2 mutantPlant Physiol120193203Google Scholar
  22. Lindahl, M., Funk, C., Webster, J., Bingsmark, S., Adamska, I., Andersson, B. 1997Expression of ELIPs and PSII-S protein in spinach during acclimative reduction of the photosystem II antenna in response to increased light intensitiesPhotosynth. Res54227236Google Scholar
  23. Meyer, G., Kloppstech, K. 1984A rapidly light-induced chloroplast protein with a high turnover coded for by pea nuclear DNAEur. J. Biochem138201207Google Scholar
  24. Montané, M.H., Dreyer, S., Triantaphylides, C., Kloppstech, K. 1997Early light-inducible proteins during long-term acclimation of barley to photooxidative stress caused by light and cold:high level of accumulation by posttranscriptional regulationPlanta202293302Google Scholar
  25. Montané, M.H., Tardy, F., Kloppstech, K., Havaux, M. 1998Differential control of xanthophylls and light-induced stress proteins, as opposed to light-harvesting chlorophyll a/b proteins, during photosynthetic acclimation of barley leaves to light irradiancePlant Physiol118227235Google Scholar
  26. Montané, M.H., Petzold, B., Kloppstech, K. 1999Formation of early-light-inducible-protein complexes and status of xanthophyll level under high light and cold stress in barley (Hordeum vulgare L.)Planta208519527Google Scholar
  27. Otto, B., Grimm, B., Ottersbach, P., Kloppstech, K. 1988Circadian control of the accumulation of mRNAs for light- and heat-inducible chloroplast proteins in pea (Pisum sativum L.)Plant Physiol882125Google Scholar
  28. Piechulla, B., Merforth, N., Rudolph, B. 1998Identification of tomato Lhc promoter regions necessary for circadian expressionPlant Mol. Biol38655662Google Scholar
  29. Porra, R.J., Thompson, W.A., Kriedermann, P.E. 1989Determination of accurate extinction coefficients and simultaneous equation for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopyBiochim. Biophys. Acta975384394Google Scholar
  30. Pötter, E., Kloppstech, K. 1993Effects of light stress on the expression of early light-inducible proteins in barleyEur. J. Biochem214779786Google Scholar
  31. Rosso, M.G., Li, Y., Strizhov, N., Reiss, B., Dekker, K., Weisshaar, B. 2003An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse geneticsPlant Mol. Biol53247259Google Scholar
  32. Sessions, A., Burke, E., Presting, G., Aux, G., McElver, J., Patton, D., Dietrich, B., Ho, P., Bacwaden, J., Ko, C., Clarke, JD., Cotton, D., Bullis, D., Snell, J., Miguel, T., Hutchison, D., Kimmerly, B., Mitzel, T., Katagiri, F., Glazebrook, J., Law, M., Goff, SA. 2002A high-throughput Arabidopsis reverse genetics systemPlant Cell1429852994Google Scholar
  33. Zeng, O., Chen, X.B., Wood A.J.,  2002Two early light-inducible protein (ELIP) cDNAs from the resurrection plant Tortula ruralis are differentially expressed in response to dessication, rehydration, salinity, and high lightJ. Exp. Bot53/37111971205Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Anna Paola Casazza
    • 1
  • Silvia Rossini
    • 1
  • Mario G. Rosso
    • 2
  • Carlo Soave
    • 1
    • 3
  1. 1.Dip. BiologiaUniversità degli Studi di MilanoItaly
  2. 2.GABI-KatMax Planck Institute for Plant Breeding ResearchKölnGermany
  3. 3.Division Research of Milano Institute of BiophysicsC.N.R. MilanoItaly

Personalised recommendations