Advertisement

Plant Molecular Biology

, Volume 60, Issue 1, pp 137–151 | Cite as

OsGLU1, A Putative Membrane-bound Endo-1,4-ß-D-glucanase from Rice, Affects Plant Internode Elongation

  • Hua-Lin Zhou
  • Si-Jie He
  • Yang-Rong Cao
  • Tao Chen
  • Bao-Xing Du
  • Cheng-Cai Chu
  • Jin-Song Zhang
  • Shou-Yi Chen
Article

Abstract

A dwarf mutant glu was identified from screening of T-DNA tagged rice population. Genetic analysis of the T1 generation of glu revealed that a segregation ratio of wild-type:dwarf phenotype was 3:1, suggesting that the mutated phenotype was controlled by a single recessive nuclear locus. The mutated gene OsGLU1, identified by Tail-PCR, encodes a putative membrane-bound endo-1,4-β-D-glucanase, which is highly conserved between mono- and dicotyledonous plants. Mutation of OsGLU1 resulted in a reduction in cell elongation, and a decrease in cellulose content but an increase in pectin content, suggesting that OsGLU1 affects the internode elongation and cell wall components of rice plants. Transgenic glu mutants harboring the OsGLU1 gene complemented the mutation and displayed the wild-type phenotype. In addition, OsGLU1 RNAi plants showed similar phenotype as the glu mutant has. These results indicate that OsGLU1 plays important roles in plant cell growth. Gibberellins and brassinosteroids induced OsGLU1 expression. In rice genome, endo-1,4-β-D-glucanases form a multiple gene family with 15 members, and each may have a distinct expression pattern in different organs. These results indicate that endo-1, 4-β-D-glucanases may play diverse roles in growth and developmental process of rice plants.

Keywords

endo-1,4-ß-D-glucanase internode elongation rice T-DNA tagging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Albersheim, P., An, J., Freshour, G., Fuller, M.S., Guillen, R., Ham, K.S., Hahn, M.G., Huang, J., O’Neill, , Whitcombe, M.A., Williams, M.V. 1994Structure and function studies of plant cell wall polysaccharidesBiochem. Soc. Trans.22374305PubMedGoogle Scholar
  2. Arioli, T.,  et al. 1998Molecular analysis of cellulose biosynthesis in ArabidopsisScience279717720CrossRefPubMedGoogle Scholar
  3. Ashikari, M., Wu, J., Yano, M., Sasaki, T., Yoshimura, A. 1999Rice gibberellin-insensitive dwarf mutant gene dwarf1 encodes the α-subunit of GTP-binding proteinProc. Natl. Acad. Sci. USA961028410289CrossRefPubMedGoogle Scholar
  4. Bishop, G.J., Koncz, C., 2002. Brassinosteroids and plant steroid hormone signaling. Plant Cell 14 Supplement S97–S110.Google Scholar
  5. Brummell, D.A., Catala, C., Lashbrook, C.C., Bennett, A.B. 1997A membrane-anchored E-type endo-1,4-b-glucanase is localized on Golgi and plasma membranes of higher plantsProc. Natl. Acad. Sci. USA9447944799CrossRefPubMedGoogle Scholar
  6. Carpita, N.C., Gibeaut, D.M. 1993Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growthPlant J.3130CrossRefPubMedGoogle Scholar
  7. Chauvaux, S., Beguin, P., Aubert, J.P. 1992Site-directed mutagenesis of essential carboxylic residues in Clostridium thermocellum endoglucanase CelDJ. Biol. Chem.26744724478PubMedGoogle Scholar
  8. Chen, J.Q., Dong Wang, Y. Y.J., Liu, Q., Zhang, J.S., Chen, S.Y. 2003An AP2/EREBP-type transcription-factor gene from rice is cold-inducible and encodes a nuclear-localized proteinTheort. Appl. Genet.107972979Google Scholar
  9. Chen, S.Y., Zhu, L.H., Hong, J., Chen, S.L. 1991Molecular biological identification of a salt-tolerant rice lineActa Bot. Sinica33569573Google Scholar
  10. Choe, S.W., Dilkes, B.P., Fujioka, S., Takatsuto, S., Sakurai, A., Feldmann, K.A. 1998The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22 alphahydroxylation steps in brassinosteroid biosynthesisPlant Cell10231243CrossRefPubMedGoogle Scholar
  11. Clouse, S.D., Langford, M., McMorris, T.C. 1996A brassinosteroid insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and developmentPlant Physiol.111671678CrossRefPubMedGoogle Scholar
  12. Cosgrove, D.J. 1993Water uptake by growing cells: An assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductanceInt. J. Plant Sci.1541021CrossRefPubMedGoogle Scholar
  13. Cosgrove, D.J. 1997Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargementPlant Cell910311041CrossRefPubMedGoogle Scholar
  14. Fagard, M., Desnos, T., Desprez, T., Goubet, F., Refrégier, G., Mouille, G., McCann, M., Rayon, C., Vernhettes, S., Höfte, H. 2000PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of ArabidopsisPlant Cell1224092423CrossRefPubMedGoogle Scholar
  15. Hiei, Y., Ohta, S., Komari, T., Kumashiro, T. 1994Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNAPlant J.6271282CrossRefPubMedGoogle Scholar
  16. Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y., Kitano, H., Koshioka, M., Futsuhara, Y., Matsuoka, M., Yamaguchi, J. 2001slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8Plant Cell139991010CrossRefPubMedGoogle Scholar
  17. Jan, A, Yang, G, Nakamura, H, Ichikawa, H, Kitano, H, Matsuoka, M, Matsumoto, H, Komatsu, S. 2004Characterization of a xyloglucan endotransglucosylase gene that is up-regulated by gibberellin in ricePlant Physiol.13636703681CrossRefPubMedGoogle Scholar
  18. Kang, J.G., Yun, J., Kim, D.H., Chung, K.S., Fujioka, S., Kim, J.I., Dae, H.W., Yoshida, S., Takatsuto, S., Song, P.S., Park, C.M. 2001Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growthCell105625636CrossRefPubMedGoogle Scholar
  19. Kauschmann, A., Jessop, A., Koncz, C., Szekeres, M., Willmitzer, L., Altmann, T. 1996Genetic evidence for an essential role of brassinosteroids in plant developmentPlant J.9701713CrossRefGoogle Scholar
  20. Knox, J.P., Linstead, P.J., Peart, J., Cooper, C., Roberts, K. 1991Developmentally regulated epitopes of the cell surface arabinogalactan protein and their relation to root tissue pattern formationPlant J.1317326Google Scholar
  21. Lane, D.R.,  et al. 2001Temperature-sensitive alleles of rsw2 link the korrigan endo-1,4-beta- glucanase to cellulose synthesis and cytokinesis in ArabidopsisPlant Physiol.126278288CrossRefPubMedGoogle Scholar
  22. Li, Y.H., Qian, Q., Zhou, Y.H., Yan, M.X., Sun, L., Zhang, M., Fu, Z.M., Wang, Y.H., Han Pang, B. X.M., Chen, M.S., Li, J.Y. 2003BRITTLE CULM1, which encodes a cOBRA-like protein, affects the mechanical properties of rice plantsPlant Cell1520202031PubMedGoogle Scholar
  23. Libertini, E., Li, Y., McQueen-Mason, S.J. 2004Phylogenetic analysis of the plant endo-beta-1,4-glucanase gene familyJ. Mol. Evol.58506515CrossRefPubMedGoogle Scholar
  24. Liu, Y.G., Whittier, R.F. 1995Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walkingGenomics25674681CrossRefPubMedGoogle Scholar
  25. McCann, M.C., Roberts, K. 1994Changes in cell wall architecture during cell elongationJ. Exp. Bot.4516831691Google Scholar
  26. Molhoj, M., Jorgensen, B., Ulvskov, P., Borkhardt, B. 2001aTwo Arabidopsis thaliana genes, KOR2 and KOR3, which encode membrane-anchored endo-1,4-b-glucanases, are differentially expressed in developing leaf trichomes and their support cellsPlant Mol. Biol.46263275Google Scholar
  27. Molhoj, M., Ulvskov, P., Dal, D.F. 2001bCharacterization of a functional soluble form of a Brassica napus membrane-anchored endo-1,4-beta-glucanase heterologously expressed in Pichia pastorisPlant Physiol.127674684CrossRefGoogle Scholar
  28. Nicol, F., His, I., Jauneau, A., Vernhettes, S., Canut, H., Höfte, H. 1998A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in ArabidopsisEMBO J.1755635576CrossRefPubMedGoogle Scholar
  29. Olszewski, N. Sun, T., Gubler, F., 2002. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14 Supplement S61–S80.Google Scholar
  30. Pagant, S., Bichet, A., Sugimoto, K., Lerouxel, O., Desprez, T., McCann, M., Lerouge, P., Vernhettes, S., Höfte, H. 2002KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis thalianaPlant Cell1420012013CrossRefPubMedGoogle Scholar
  31. Peng, J., Carol, P., Richards, D.E., King, K.E., Cowling, R.J., Murphy, G.P., Harberd, N.P. 1997The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responsesGenes Dev.1131943205PubMedGoogle Scholar
  32. Potikha, T., Delmer, D.P. 1995A mutant of Arabidopsis thaliana. Displaying altered patterns of cellulose depositionPlant J.7453460CrossRefGoogle Scholar
  33. Reiter, W.D. 2002Biosynthesis and properties of the plant cell wallCurr.Opin. Plant Biol.5536542CrossRefPubMedGoogle Scholar
  34. Roberts, K. 1990Structures at the plant cell surfaceCurr. Opin. Cell Biol.2920928CrossRefPubMedGoogle Scholar
  35. Sato, S., Kato, T., Kakegawa, K., Ishii, T., Liu, Y.G., Awano, T., Takabe, K., Nishiyama, Y., Kuga, S., Nakamura, Y., Tabata, S., Shibata, D. 2001Role of the putative membrane-bound endo-1,4-beta-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thalianaPlant Cell Physiol.42251263CrossRefPubMedGoogle Scholar
  36. Selvendran, R.R., O’Neill, M.A. 1987Isolation and analysis of cell walls from plant materialMeth. Biochem. Anal.3225153Google Scholar
  37. Turner, S.R., Somerville, C.R. 1997Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wallPlant Cell9689701CrossRefPubMedGoogle Scholar
  38. Uozu, S., TanakaUeguchi, M., Kitano, H., Hattori, K., Matsuoka, M. 2000Characterization of XET-related genes of ricePlant Physiol.122853859CrossRefPubMedGoogle Scholar
  39. Xie, C., Zhang, J.S., Chen, S.Y. 1999Tobacco floral homeotic gene Nfbp6 is specifically expressed during pollen and ovule developmentSci. China (Series C)42481484Google Scholar
  40. Zablackis, E., Huang, J., Muller, B., Darvill, A.G., Albersheim, P. 1995Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leavesPlant Physiol.10711291138CrossRefPubMedGoogle Scholar
  41. Zhang, J.S., Zhou, J.M., Zhang, C., Chen, S.Y. 1996Differential gene expression in a salt-tolerance rice mutant and its parental varietySci. China (Series C)39310–319Google Scholar
  42. Zhang, Z.G., Yan, G., He, X.J., Wang, Y.J., Sun, Z.X., Zhang, J.S., Chen, S.Y. 2003Cloning of the full-length gene for tobacco ethylene receptor NTHK2 and characterization of its kinase domainActa Bot. Sinica456872Google Scholar
  43. Zuo, J., Niu, Q.W., Nishizawa, N., Wu, Y., Kost, B., Chua, N.H. 2000KORRIGAN, an Arabidopsis endo-1,4-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesisPlant Cell1211371152CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Hua-Lin Zhou
    • 1
  • Si-Jie He
    • 1
  • Yang-Rong Cao
    • 1
  • Tao Chen
    • 1
  • Bao-Xing Du
    • 1
  • Cheng-Cai Chu
    • 1
  • Jin-Song Zhang
    • 1
  • Shou-Yi Chen
    • 1
  1. 1.National Key Lab of Plant Genomics, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations