Advertisement

Plant Molecular Biology

, Volume 59, Issue 4, pp 603–617 | Cite as

Overexpression of the Pepper Transcription Factor CaPF1 in Transgenic Virginia Pine (Pinus Virginiana Mill.) Confers Multiple Stress Tolerance and Enhances Organ Growth

  • Wei Tang
  • Thomas M. Charles
  • Ronald J. Newton
Article

Abstract

Transcription factors play an important role in regulating gene expression in response to stress and pathogen tolerance. We describe here that overexpression of an ERF/AP2 pepper transcription factor (CaPF1) in transgenic Virginia pine (Pinus virginiana Mill.) confers tolerance to heavy metals Cadmium, Copper, and Zinc, to heat, and to pathogens Bacillus thuringiensis and Staphylococcus epidermidis, as by the survival rate of transgenic plants and the number of decreasing pathogen cells in transgenic tissues. Measurement of antioxidant enzymes ascorbate peroxidase (APOX), glutathione reductase (GR), and superoxide dismutase (SOD) activities demonstrated that the level of the enzyme activities was higher in transgenic Virginia pine plants overexpressing the CaPF1 gene, which may protect cells from the oxidative damage caused by stresses, compared to the controls. Constitutive overexpression of CaPF1 gene enhanced organ growth by increasing organ size and cell numbers in transgenic Virginia pine plants over those in control plants.

Key words

overexpression Pinus virginiana Mill stress tolerance transcription factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foyer, C.H., Deascouveries, P., Kunert, K.J. 1994Protection against oxygen radicals: important defense mechanism studied in transgenic plantsPlant Cell Environ.17507523Google Scholar
  2. Gawel, J.E., Ahner, B.A., Friedland, A.J., Morel, F.M.M. 1996Role for heavy metals in forest decline indicated by phytochelatin measurementsNature3816465CrossRefGoogle Scholar
  3. Gong, J.M., Lee, D.A., Schroeder, J.I. 2003Long-distance root-to-shoot transport of phytochelatins and cadmium in ArabidopsisProc. Natl. Acad. Sci. USA1001011810123CrossRefPubMedGoogle Scholar
  4. Groppa, M.D., Tomaro, M.L., Benavides, M.P. 2001Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discsPlant Sci.161481488CrossRefGoogle Scholar
  5. Gu, Y.Q., Wildermuth, M.C., Chakravarthy, S., Loh, Y.T., Yang, C., He, X., Han, Y., Martin, G.B. 2002Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in ArabidopsisPlant Cell14817831CrossRefPubMedGoogle Scholar
  6. Huckelhoven, R., Dechert, C., Kogel, K.H. 2003Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminisProc. Natl. Acad. Sci. USA10055555560CrossRefPubMedGoogle Scholar
  7. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F. 1998Arabidopsis CBF1 overexpression induces COR genes and enhances freezing toleranceScience280104106CrossRefPubMedGoogle Scholar
  8. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinnozaki, K., Shinozaki, K. 1999Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factorNat Biotechnol.17287291CrossRefPubMedGoogle Scholar
  9. Kim, J.B., Kang, J.Y., Kim, S.Y. 2004Over-expression of a transcription factor regulating ABA responsive gene expression confers multiple stress tolerancePlant Biotechnol. J.2459466CrossRefGoogle Scholar
  10. Kovtun, Y., Chiu, W.L., Tena, G., Sheen, J. 2000Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plantsProc. Natl. Acad. Sci. USA9729402945CrossRefPubMedGoogle Scholar
  11. Lincoln, J.E., Richael, C., Overduin, B., Smith, K., Bostock, R., Gilchrist, D.G. 2002Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to diseaseProc. Natl. Acad. Sci. USA991521715221CrossRefPubMedGoogle Scholar
  12. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K. 1998Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in ArabidopsisPlant Cell1013911406CrossRefPubMedGoogle Scholar
  13. Lobreaux, S., Thoiron, S., Briat, J.F. 1995Induction of ferritin synthesis in maize leaves by an iron-mediated oxidative stressPlant J.8443449CrossRefGoogle Scholar
  14. Mizukami, Y., Fischer, R.L. 2000Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesisProc. Natl. Acad. Sci. USA97942947CrossRefPubMedGoogle Scholar
  15. Moon, H., Lee, B., Choi, G., Shin, D., Prasad, D.T., Lee, O., Kwak, S.S., Kim, D.H., Nam, J., Bahk, J., Hong, J.C., Lee, S.Y., Cho, M.J., Lim, C.O., Yun, D.J. 2003NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plantsProc. Natl. Acad. Sci. USA100358363CrossRefPubMedGoogle Scholar
  16. Mukhopadhyay, A., Vij, S., Tyagi, A.K. 2004Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobaccoProc. Natl. Acad. Sci. USA10163096314CrossRefPubMedGoogle Scholar
  17. Queitsch, C., Hong, S.W., Vierling, E., Lindquist, S. 2000Heat shock protein 101 plays a crucial role in thermotolerance in ArabidopsisPlant Cell12479492CrossRefPubMedGoogle Scholar
  18. Roxas, V.P., Smith, R.K.,Jr, Allen, E.R., Allen, R.D. 1997Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stressNat. Biotechnol.15988991CrossRefPubMedGoogle Scholar
  19. Rushton, P.J., Somssich, I.E. 1998Transcriptional control of plant genes responsive to pathogensCurr. Opin. Plant Biol.1311315CrossRefPubMedGoogle Scholar
  20. Sambrook, J., Fritsch, E.F., Maniatis, T. 1989Molecular cloning: A Laboratory Manual, 2nd editionCold Spring Harbor Laboratory PressNew YorkGoogle Scholar
  21. Sheveleva, E., Chmara, W., Bohnert, H.J., Jensen, R.G. 1997Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum LPlant Physiol.11512111219PubMedGoogle Scholar
  22. Shinozaki, K., Yamaguchi-Shinozaki, K. 2000Molecular responses to dehydration and low temperature: differences and cross talk between two stress signaling pathwaysCurr. Opin. Plant Biol.3217223PubMedGoogle Scholar
  23. Shi, H., Lee, B.H., Wu, S.J., Zhu, J.K. 2003Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thalianaNat. Biotechnol.218185CrossRefPubMedGoogle Scholar
  24. Stockinger, E.J., Gilmour, S.J., Thomashow, M.F. 1997Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficitProc. Natl. Acad. Sci. USA9410351040CrossRefPubMedGoogle Scholar
  25. Stroinski, A., Floryszak-Wieczorek, J. 1993Effect of cadmium on the host–pathogen system. IV. Influence of cadmium and Phytophtora infestans on membrane permeability of potato tuberJ. Plant Physiol.142575578Google Scholar
  26. Tang, W., Luo, H., Newton, R.J. 2004Effects of antibiotics on the elimination of Agrobacterium tumefaciens from loblolly pine (Pinus taeda) zygotic embryo explants and on transgenic plant regenerationPlant Cell Tiss. Org. Cult.707181CrossRefGoogle Scholar
  27. Tang, W., Newton, R.J. 2004aRegulated gene expression by glucocorticoids in cultured Virginia pine (Pinus virginiana Mill.) cellsJ. Exp. Bot.5514991508CrossRefGoogle Scholar
  28. Tang, W., Newton, R.J. 2004bIncrease of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (Pinus virginiana Mill.)Plant Sci.167621628CrossRefGoogle Scholar
  29. Tang, W., Sederoff, R., Whetten, R. 2001Regeneration of transgenic Virginia pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciensPlanta213981989PubMedGoogle Scholar
  30. Tarczynski, M.C., Jensen, R.G., Bohnert, H.J. 1993Stress protection of transgenic tobacco by production of the osmolyte mannitolScience259508510Google Scholar
  31. Thomashow, M.F. 1999Plant cold acclimation: freezing tolerance genes and regulatory mechanismsAnnu. Rev. Plant Physiol. Plant Mol. Biol.50571599CrossRefPubMedGoogle Scholar
  32. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K. 2000Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinityProc. Natl. Acad. Sci. USA9763211 637CrossRefGoogle Scholar
  33. Vailleau, F., Daniel, X., Tronchet, M., Montillet, J.L., Triantaphylides, C., Roby, D. 2002A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attackProc. Natl. Acad. Sci. USA991017910184CrossRefPubMedGoogle Scholar
  34. Yi, S.Y., Kim, J.H., Joung, Y.H., Lee, S., Kim, W.T., Yu, S.H., Choi, D. 2004The pepper transcription factor capf1 confers pathogen and freezing tolerance in ArabidopsisPlant Physiol.13628622874CrossRefPubMedGoogle Scholar
  35. Zeevaart, J.A.D., Creelman, R.A. 1988Metabolism and physiology of abscisic acidAnnu. Rev. Plant Physiol. Plant Mol. Biol.39439473CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Wei Tang
    • 1
  • Thomas M. Charles
    • 1
  • Ronald J. Newton
    • 1
  1. 1.Department of Biology, Howell Science ComplexEast Carolina UniversityGreenvilleUSA

Personalised recommendations