Advertisement

Plant Molecular Biology

, Volume 56, Issue 5, pp 783–794 | Cite as

Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties: homology-modeling analyses

  • Matt Geisler
  • Malgorzata Wilczynska
  • Stanislaw Karpinski
  • Leszek A. Kleczkowski
Article

Abstract

UDP-glucose pyrophosphorylase (UGPase) is an important enzyme of synthesis of sucrose, cellulose, and several other polysaccharides in all plants. The protein is evolutionarily conserved among eukaryotes, but has little relation, aside from its catalytic reaction, to UGPases of prokaryotic origin. Using protein homology modeling strategy, 3D structures for barley, poplar, and Arabidopsis UGPases have been derived, based on recently published crystal structure of human UDP-N-acetylglucosamine pyrophosphorylase. The derived 3D structures correspond to a bowl-shaped protein with the active site at a central groove, and a C-terminal domain that includes a loop (I-loop) possibly involved in dimerization. Data on a plethora of earlier described UGPase mutants from a variety of eukaryotic organisms have been revisited, and we have, in most cases, verified the role of each mutation in enzyme catalysis/regulation/structural integrity. We have also found that one of two alternatively spliced forms of poplar UGPase has a very short I-loop, suggesting differences in oligomerization ability of the two isozymes. The derivation of the structural model for plant UGPase should serve as a useful blueprint for further function/structure studies on this protein.

Keywords

Alternative splicing homology modeling oligomerization sucrose synthesis UDP-glucose pyrophosphorylase UDP-N-acetylglucosamine pyrophosphorylase 

Abbreviations

aa

amino acid(s)

AGPase

ADP-glucose pyrophosphorylase

AGX

human antigen-X, belonging to UNAGAPase family

PPi

inorganic pyrophosphate

SPS

sucrose phosphate synthase

SuSy

sucrose synthase

UDP-Glc

UDP-glucose

UGPase

UDP-Glc pyrophosphorylase

UNAGA

UDP-N-acetylglucosamine

UNAGAPase

UNAGA pyrophosphorylase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T., Niiyama, H., Sasahara, T. 2002Cloning of cDNA for UDP-glucose pyrophosphorylase and the expression of mRNA in rice endospermTheor. Appl. Genet.105216221Google Scholar
  2. ap Rees 1992. Synthesis of storage starch. In: C.R. Pollock, J.F. Farrar and A.J. Gordon (Eds.), Carbon Partitioning Within and Between Organisms, Bios Scientific Publishers, Oxford, pp. 115–131.Google Scholar
  3. Bergamini, C.M., Signorini, M. 1991Exploring the catalytic mechanism of skeletal muscle UDP-glucose pyrophosphorylase: identification of a hyperreactive cysteine at the enzyme active siteInt. J. Biochem.23123127Google Scholar
  4. Bishop, J.D., Moon, B.C., Harrow, F., Gomer, R.H., Dottin, R.P., Brazill, D.T. 2002A second UDP-glucose pyrophosphorylase is required for differentiation and development in Dictyostelium discoideumJ. Biol. Chem.2773243032437Google Scholar
  5. Brown, K., Pompeo, F., Dixon, S., Mengin-Lecreulx, D., Cambillau, C., Bourne, Y. 1999Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamilyEMBO J.1840964107Google Scholar
  6. Chang, H.Y., Peng, H.L., Chao, Y.C., Duggleby, R.G. 1996The importance of conserved residues in human liver UDP-glucose pyrophosphorylaseEur. J. Biochem.236723728Google Scholar
  7. Charnock, S.J., Davies, G.J. 1999Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed formsBiochemistry3863806385Google Scholar
  8. Ciereszko, I., Johansson, H., Hurry, V., Kleczkowski, L.A. 2001bPhosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of ArabidopsisPlanta212598605Google Scholar
  9. Ciereszko, I., Johansson, H., Kleczkowski, L.A. 2001aSucrose regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and ABA-insensitive pathway in ArabidopsisBiochem. J.3546772Google Scholar
  10. Ciereszko, I., Johansson, H. and Kleczkowski, L.A. 2005. Interactive effects of phosphate deficiency, sucrose and light/dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis. J. Plant Physiol. (in press).Google Scholar
  11. Daran, J.M., Dallies, N., Thines-Sempoux, D., Francois, J. 1995Genetic and biochemical characterization of the UGP1 gene encoding UDP-glucose pyrophosphorylase from Saccharomyces cerevisiaeEur. J. Biochem.233520530Google Scholar
  12. Duggleby, R.G., Chao, Y.C., Huang, J.G., Peng, H.L., Chang, H.Y. 1996Sequence differences between human muscle and liver cDNAs for UDPglucose pyrophosphorylase and kinetic properties of the recombinant enzymes expressed in Escherichia coliEur. J. Biochem.235173179Google Scholar
  13. Eimert, K., Villand, P., Kilian, A., Kleczkowski, L.A. 1996Cloning and characterization of several cDNAs for UDP-glucose pyrophosphorylase from barley (Hordeum vulgare) tissuesGene170227232Google Scholar
  14. Feingold, D.S., Avigad, G. 1980Sugar nucleotide transformation in plants.Stumpf, P.K.Conn, E.E. eds. The Biochemistry of Plants, Vol. 3 Academic PressNew York101170Google Scholar
  15. Flores-Díaz, M., Alape-Girón, A., Persson, B., Pollesello, P., Moss, M., Eichel-Streiber, C., Thelestam, M., Florin, I. 1997Cellular UDP-glucose deficiency caused by a single point mutation in the UDP-glucose pyrophosphorylaseJ. Biol. Chem.2722378423791Google Scholar
  16. Gibeaut, D.M. 2000Nucleotide sugars and glucosyltransferases for synthesis of cell wall matrix polysaccharidesPlant Physiol. Biochem.386980Google Scholar
  17. Guex, N., Diemand, A., Peitsch, M.C. 1999Protein modelling for all.Trends Biochem. Sci.24364367Google Scholar
  18. Higuita, J.C., Alape-Giron, A., Thelestam, M., Katz, A. 2003A point mutation in the UDP-glucose pyrophosphorylase gene results in decreases of UDP-glucose and inactivation of glycogen synthase.Biochem. J.3709951001Google Scholar
  19. Katsube, T., Kazuta, Y., Mori, H., Nakano, K., Tanizawa, K., Fukui, T. 1990UDP-glucose pyrophosphorylase from potato tuber: cDNA cloning and sequencing.J. Biochem.108321326Google Scholar
  20. Katsube, T., Kazuta, Y., Tanizawa, K., Fukui, T. 1991Expression in Escherichia coli of UDP-glucose pyrophosphorylase cDNA from potato tuber and functional assessment of the lysyl residues located at the substrate-binding site.Biochemistry3085468551Google Scholar
  21. Kazuta, Y., Omura, Y., Tagaya, M., Nakano, K., Fukui, T. 1991Identification of lysyl residues located at the substrate-binding site in UDP-glucose pyrophosphorylase from potato tuber: affinity labeling with uridine di- and triphosphopyridoxals.Biochemistry3085418545Google Scholar
  22. Kleczkowski, L.A. 1994Glucose activation and metabolism through UDP-glucose pyrophosphorylase in plants.Phytochemistry3715071515Google Scholar
  23. Kleczkowski, L.A. 1996Back to the drawing board: redefining starch synthesis in cereals.Trends Plant Sci.1363364Google Scholar
  24. Kleczkowski, L.A. 2000Is leaf ADP-glucose pyrophosphorylase an allosteric enzyme.Biochim. Biophys. Acta1476103108Google Scholar
  25. Kleczkowski, L.A., Geisler, M., Ciereszko, I., Johansson, H. 2004UDP-glucose pyrophosphorylase–an old protein with new tricks.Plant Physiol.134912918Google Scholar
  26. Koch, K.E. 1996Carbohydrate-modulated gene expression in plants.Annu. Rev. Plant Physiol. Plant Mol. Biol.47509540Google Scholar
  27. Konishi, Y., Tanizawa, K., Muroya, S., Fukui, T. 1993Molecular cloning, nucleotide sequencing, and affinity labeling of bovine liver UDP-glucose pyrophosphorylaseJ. Biochem.1146168Google Scholar
  28. Kumar, S., Tamura, K., Nei, M. 2004MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignmentBrief. Bioinform.5150163Google Scholar
  29. Lichtarge, O., Bourne, H.R., Cohen, F.E. 1996An evolutionary trace method defines binding surfaces common to protein familiesJ. Mol. Biol.257342358Google Scholar
  30. Martz, F., Wilczynska, M., Kleczkowski, L.A. 2002Oligomerization status, with the monomer as active species, defines catalytic efficiency of UDP-glucose pyrophosphorylaseBiochem. J.367295300Google Scholar
  31. Miernyk, J.A. 1999Protein folding in the plant cellPlant Physiol121695703Google Scholar
  32. Nakano, K., Omura, Y., Tagaya, M., Fukui, T. 1989UDP-glucose pyrophosphorylase from potato-tuber–purification and characterizationJ. Biochem.106528532Google Scholar
  33. Obenauer, J.C., Cantley, L.C., Yaffe, M.B. 2003Scansite2.0: proteome-wide prediction of cell signaling interactions using short sequence motifsNucl. Acids Res.3136353641Google Scholar
  34. Peneff, C., Ferrari, P., Charrier, V., Taburet, Y., Monnier, C., Zamboni, V., Winter, J., Harnois, M., Fassy, F., Bourne, Y. 2001Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architectureEMBO J.2061916202Google Scholar
  35. Pua, E.C., Lim, S.S.W., Liu, P., Liu, J.Z. 2000Expression of UDP-glucose pyrophosphorylase cDNA during fruit ripening of bananaAust. J. Plant Physiol.2711511159Google Scholar
  36. Ragheb, J.A., Dottin, R.P. 1987Structure and sequence of a UDP-glucose pyrophosphorylase gene of Dictyostelium-discoideumNucl. Acids Res.1538913906Google Scholar
  37. Repetto, O., Bestel-Corre, G., Dumas-Gaudot, E., Berta, G., Gianinazzi-Pearson, V., Gianinazzi, S. 2003Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea rootsNew Phytol.157555567Google Scholar
  38. Rutter, J., Probst, B.L., McKnight, S.L. 2002Coordinate regulation of sugar flux and translation by PAS kinaseCell1111728Google Scholar
  39. Seifert, G.J. 2004Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outsideCurr. Opin. Plant Biol.718Google Scholar
  40. Sowokinos, J.R. 2001Biochemical and molecular control of cold-induced sweetening in potatoesAm. J. Potato Res.78221236Google Scholar
  41. Sowokinos, J.R., Spychalla, J.P., Desborough, S.L. 1993Pyrophosphorylases in Solanum tuberosum. Purification, tissue localization, and physicochemical properties of UDP-glucose pyrophosphorylase. Plant Physiol.10110731080Google Scholar
  42. Sowokinos, J.R., Vigdorovich, V., Abrahamsen, M. 2004Molecular cloning and sequence variation of UDP-glucose pyrophosphorylase cDNAs from potatoes sensitive and resistant to cold sweeteningJ. Plant Physiol.161947955Google Scholar
  43. Sterky, F., Bhalerao, R.R., Unneberg, P., Segerman, B., Nilsson, P., Brunner, A.M., Charbonnel-Campaa, L., Jonsson Lindvall, J., Tandre, K., Strauss, S.H., Sundberg, B., Gustafsson, P., Uhlén, M., Bhalerao, R.P., Nilsson, O., Sandberg, G., Karlsson, J., Lundeberg, J., Jansson, S. 2004A Populus expressed sequence tag resources for plant functional genomicsProc. Natl. Acad. Sci. USA1011395113956Google Scholar
  44. Thorbjørnsen, T., Villand, P., Kleczkowski, L.A., Olsen, O.A. 1996A single gene encodes two different transcripts for the ADP-glucose pyrophosphorylase small subunit from barley (Hordeum vulgare)Biochem. J.313149154Google Scholar
  45. Toroser, D., Huber, S.C. 2000Carbon and nitrogen metabolism and reversible protein phosphorylationAdv. Bot. Res.32434458Google Scholar
  46. Unligil, U.M., Zhou, S., Yuwaraj, S., Sarkar, M., Schachter, H., Rini, J.M. 2000X-ray crystal structure of rabbit N-acetylglucosaminyl transferase I: catalytic mechanism and a new protein superfamilyEMBO J.1952695280Google Scholar
  47. van Gunsteren, W. F., Billeter, S.R., Eising A.A., Hünenberger, P.H., Kruger, P., Mark, A.E., Scott, W.R.P. and Tironi, I.G. 1996. Biomolecular Simulation: The GROMOS96 Manual and User Guide. Hochschulverlag AG an der ETH Zurich and BIOMOS b.v., Zurich, Groningen.Google Scholar
  48. Wang-Gillam, A., Pastuszak, I., Elbein, A.D. 1998A 17-amino acid insert changes UDP-N-acetylhexosamine pyrophosphorylase specificity from UDP-GalNAc to UDP-GlcNAc.J. Biol. Chem.2732705527057Google Scholar
  49. Wells, L., Whalen, S.A., Hart, G.W. 2003O-GlcNAc: a regulatory post-translational modification.Biochem. Biophys. Res. Commun.302435441Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Matt Geisler
    • 1
  • Malgorzata Wilczynska
    • 2
  • Stanislaw Karpinski
    • 1
    • 3
  • Leszek A. Kleczkowski
    • 1
  1. 1.Department of Plant Physiology, Umeå Plant Science CentreUmeå UniversityUmeåSweden
  2. 2.Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
  3. 3.Department of BotanyStockholm UniversityStockholmSweden

Personalised recommendations