Plant Molecular Biology

, Volume 55, Issue 4, pp 553–566 | Cite as

Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile

  • Ulf Grunwald
  • Oyunbileg Nyamsuren
  • M'Barek Tamasloukht
  • Laurence Lapopin
  • Anke Becker
  • Petra Mann
  • Vivienne Gianinazzi-Pearson
  • Franziska Krajinski
  • Philipp Franken


Suppressive subtractive hybridisation was applied to the analysis of late stage arbuscular mycorrhizal development in pea. 96 cDNA clones were amplified and 81, which carried fragments more than 200 nt in size, were sequence analysed. Among 67 unique fragments, 10 showed no homology and 10 were similar to sequences with unknown function. RNA accumulation of the corresponding 67 genes was analysed by hybridisation of macro-arrays. The cDNAs used as probes were derived from roots of wild type and late mutant pea genotypes, inoculated or not with the AM fungus Glomus mosseae. After calibration, a more than 2.5-fold mycorrhiza-induced RNA accumulation was detected in two independent experiments in the wild type for 25 genes, 22 of which seemed to be induced specifically during late stage AM development. Differential expression for 7 genes was confirmed by RT-PCR using RNA from mycorrhiza and from controls of a different pea cultivar. In order to confirm arbuscule-related expression, the Medicago truncatula EST data base was screened for homologous sequences with putative mycorrhiza-related expression and among a number of sequences with significant similarities, a family of trypsin inhibitor genes could be identified. Mycorrhiza-induced RNA accumulation was verified for five members by real-time PCR and arbuscule-related activation of the promoter could be shown in transgenic roots for one of the genes, MtTi1.

arbuscular mycorrhiza Medicago truncatula Pisum sativum suppressive subtractive hybridisation trypsin inhibitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul, S. F., Gish, W., Miller, W., Myers E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.PubMedGoogle Scholar
  2. Alexander, T., Meier, R., Toth, R. and Weber, H. C. 1988. Dynamics of arbuscule development and degeneration in mycorrhizas of Triticum aestivum L. and Avena sativa L. with reference to Zea mays L. New Phytol. 110:363–370.Google Scholar
  3. Balestrini, R., Jose-Estanyol, M., Puigdomenech, P. and Bonfante, P. 1997. Hydroxyproline-rich glycoprotein mRNA accumulation in maize root cells colonized by an arbuscular mycorrhizal fungus as revealed by in situ hybridization. Protoplasma 198:36–42.Google Scholar
  4. Bauer, D., Mu ¨ller, H., Reich, J., Riedel, H., Ahrenkiel, V., Warthoe, P. and Strauss, M. 1993. Identi cation of di. eren-. tially expressed mRNA species by an improved display technique (DDRT-PCR). Nucl. Acids Res. 21:4272–4280.PubMedGoogle Scholar
  5. Berta, G., Tagliasacchi, A. M., Fusconi, A., Gerlero, D., Trotta, A. and Scannerini, S. 1991. The mitotic-cycle in root apical meristems of Allium-porrum l is controlled by the endomycorrhizal fungus Glomus sp strain e3. Protoplasma 161: 12–16.Google Scholar
  6. Blee, E. 1998. Biosynthesis of phytooxylipins-the peroxygenase pathway. Lipid 100:121–127.Google Scholar
  7. Blee, K. A. and Anderson, A. J. 1996. Defense-related transcript accumulation in Phaseolus vulgaris L. colonized by the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith. Plant Physiol. 110:675–688.PubMedGoogle Scholar
  8. Blee, K. A. and Anderson, A. J. 1998. Regulation of arbuscule formation by carbon in the plant. Plant J. 16:523–530.Google Scholar
  9. Blee, K. A. and Anderson, A. J. 2000. Defense responses in plants to arbuscular mycorrhizal fungi. In:G. Podila (Ed. ), Current Advances in Mycorrhizal Research, American Phytopathology Society, St. Paul, pp. 27–44.Google Scholar
  10. Blee, K. A. and Anderson, A. J. 2002. Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules. Plant Mol. Biol. 50:197–211.PubMedGoogle Scholar
  11. Boisson-Dernier, A., Chabaud, M., Garcia, F., Becard, G., Rosenberg, C. and Barker, D. G. 2001. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-xing and endomycorrhizal symbiotic associations. Mol. Plant-Microbe. Interact. 14:695–700.PubMedGoogle Scholar
  12. Bonanomi, A., Wiemken, A., Boller, T. and Salzer P. 2001. Local induction of a mycorrhiza-specific class III chitinase gene in cortical root cells of Medicago truncatula containing developing or mature arbuscules. Plant Biol. 3:194–199.Google Scholar
  13. Bonfante, P., Bergero, R., Uribe, X., Romera, C., Rigau, J. and Puigdomenech, P. 1996. Transcriptional activation of a maize a tubulin gene in mycorrhizal maize and transgenic tobacco plants. Plant J. 9:737–743.Google Scholar
  14. Bonfante, P. and Perotto, S. 1995. Transley review No. 82: strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol. 130:3–21.Google Scholar
  15. Bonfante-Fasolo, P., Tamagnone, L., Perotto, R., Esquerre ´Tugaye ´, M. T., Mazau, D., Mosiniak, M. and Vian, B. 1991. Immunocytochemical location of hydroxyproline-rich glycoproteins at the interface between a mycorrhizal fungus and its host plant. Protoplasma 165:127–138.Google Scholar
  16. Brechenmacher, L., Weidmann, S., van Tuinen, D., Chatagnier, O., Gianinazzi, S., Franken, P. and Gianinazzi-Pearson, V. 2004. Expression pro ling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions. Mycorrhiza:in press.Google Scholar
  17. Butt, A., Mousley, C., Morris, K., Beynon, J., Can, C., Holub, E., Greenberg, J. T. and Buchanan-Wollaston, V. 1998. Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae. Plant J. 16: 209–221.PubMedGoogle Scholar
  18. Chang, F. Q., Li, Y. X., Liu, X. M., Liu, G. S. and Zhu, Z. Q. 2003. Characterization of variation induced by low-energy N + and cloning of Differentially expressed cDNA of a mutant in Arabidopsis thaliana. P. Natl. Acad. Sci. USA. 13:271–275.Google Scholar
  19. Chiang, C. C. and Hadwiger, L. A. 1991. The Fusarium solani induced expression of a pea gene family encoding high cysteine content proteins. Mol. Plant-Microbe. Interact. 4: 324–331.PubMedGoogle Scholar
  20. Danneberg, G., Latus, C., Zimmer, W., Hundeshagen, B., Schneider-Poetsch H. J. and Bothe, H. 1993. In. uence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L. ). J. Plant. Physiol. 141:33–39.Google Scholar
  21. Dellaporta, S. L., Wood, J. and Hicks, J. B. 1983. Maize DNA minipreps. Maize Genet. Coop. News Let. 57:26.Google Scholar
  22. Delp, G., Smith, S. E. and Barker, S. J. 2000. Isolation by Differential display of three partial cDNAs potentially coding for proteins from the VA mycorrhizal fungus Glomus intraradices. Mycol. Res. 104:293–300.Google Scholar
  23. De Vries, S. C., Springer, J. and Wessels, J. G. H. 1982. Diversity of abundant mRNA sequences and patterns of protein synthesis in etiolated and greened pea seedlings. Planta 156: 129–135.Google Scholar
  24. Dickson. S. and Smith S. E. 2001. Cross walls in arbuscular trunk hyphae form after loss of metabolic activity. New Phytol. 151:735–742.Google Scholar
  25. Doll J., Hause B., Demchenko K., Pawlowski, K. and Krajinski, F. 2003. A member of the germin-like protein family is a highly conserved mycorrhiza-specific induced gene. Plant Cell Physiol. 44:1208–1214.PubMedGoogle Scholar
  26. Dumas-Gaudot, E., Asselin, A., Gianinazzi-Pearson, V., Gollotte, A. and Gianinazzi, S. 1994. Chitinase isoforms in roots of various pea genotypes infected with arbuscular mycorrhizal fungi. Plant Sci. 99:27–37.Google Scholar
  27. Engvild, K. C. 1987. Nodulation and nitrogen xation mutants of pea, Pisum sativum L. Theoret. Appl. Genet. 74:711–713.Google Scholar
  28. Evans, K. M., Gatehouse, J. A., Lindsay, W. P., Shi, J., Tommey, A. M. and Robinson, N. J. 1992. Expression of the pea metallothionein-like gene Psmta in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation:implications for PsMTA function. Plant Mol. Biol. 20: 1019–28.PubMedGoogle Scholar
  29. Ferrol, N., Pozo, M. J., Antelo, M. and Azcon-Aguilar, C. 2002. Arbuscular mycorrhizal symbiosis regulates plasma membrane H +-ATPase gene expression in tomato plants. J Exp Bot 53:1683–1687.PubMedGoogle Scholar
  30. Fester, T., Strack, D. and Hause, B. 2001. Reorganization of tobacco root plastids during arbuscule development. Planta 213:864–868.PubMedGoogle Scholar
  31. Franken, P., Requena, N., Bu ¨tehorn, B., Krajinski, F., Kuhn, G., Lapopin, L., Mann, P., Rhody, D., and Stommel, M. 2000. Molecular analysis of the arbuscular mycorrhiza symbiosis. Arch. Agron. Soil. Sci. 45:271–286.Google Scholar
  32. Genre, A. and Bonfante, P. 1997. A mycorrhizal fungus changes microtubule orientation in tobacco root cells. Protoplasma 199:30–38.Google Scholar
  33. Genre, A. and Bonfante, P. 1998. Actin versus tubulin con guration in arbuscule-containing cells from mycorrhizal tobacco roots. New Phytol. 140:745–752.Google Scholar
  34. Genre, A. and Bonfante, P. 2002. Epidermal cells of a symbiosis-defective mutant of Lotus japonicus show altered cytoskeleton organisation in the presence of a mycorrhizal fungus. Protoplasma 219:43–50.PubMedGoogle Scholar
  35. Gianinazzi-Pearson, V. 1996. Plant cell response to arbuscular mycorrhizal fungi:getting to the roots of the symbiosis. Plant Cell 8:1871–1883.PubMedGoogle Scholar
  36. Gianinazzi-Pearson, V., Arnould, C., Oufattole, M., Arango, M. and Gianinazzi, S. 2000. Differential activation of H +-. ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211:609–613.PubMedGoogle Scholar
  37. Gianinazzi-Pearson, V., Brechenmacher, L., Weidmann, S., Sanchez, L., Gianinazzi, S. and van Tuinen, D. 2004. Molecular dialogue in arbuscular mycorrhiza:getting to the symbiotic cell programme. Mol. Plant-Microbe Interact. in press.Google Scholar
  38. Gianinazzi-Pearson, V., Smith, S. E., Gianinazzi, S. and Smith, F. A. 1991. Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas V. Is H +-ATPase a component of ATP-hydrolysing enzyme activities in plantfungus interfaces? New Phytol. 117:61–74.Google Scholar
  39. Gianinazzi-Pearson, V., Tahiri-Alaoui, A., Antoniw, J. F., Gianinazzi, S. and Dumas-Gaudot, E. 1992. Weak expression of the pathogenesis related PR-b1 gene and localization of related proteins during symbiotic endomycorrhizal interaction in tobacco roots. Endocytosis Cell Res. 8:177–185.Google Scholar
  40. Giovannetti, M., Sbrana, C. and Logi, C. 1994. Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol. 127:703–709.Google Scholar
  41. Giritch, A., Herbik, A., Balzer, H. J., Ganal, M., Stephan, U. W. and Baumlein, H. 1997. A root-specific iron-regulated gene of tomato encodes a lysyl-tRNA-synthetase-like protein. Eur. J. Biochem. 244:310–317.PubMedGoogle Scholar
  42. Gish, W. and States, D. J. 1993. Identification of protein coding regions by database similarity search. Nature Genet. 3: 266–272.PubMedGoogle Scholar
  43. Giudici, A. M., Regente, M. C. and de la Canal, L. 2000. A potent antifungal protein from Helianthus annuus. owers is a trypsin inhibitor. Plant Physiol. Biochem. 38:881–888.Google Scholar
  44. Gollotte, A., Gianinazzi-Pearson, V. and Gianinazzi, S. 1995. Immunodetection of infection thread glycoprotein and arabinogalactan protein in wild type Pisum sativum (L. )or an isogenic mycorrhiza-resistant mutant interacting with Glomus mosseae. Symbiosis 18:69–85.Google Scholar
  45. Harrison, M. J. and Dixon, R. A. 1994. Spatial patterns of expression of. avonoid/iso. avonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J. 6:9–20.Google Scholar
  46. Harrison, M. J., Dewbre, G. R. and Liu, J. Y. 2002. A phosphate transporter from Medicago truncatula involved in the acquisiton of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429.PubMedGoogle Scholar
  47. Hause, B. Maier, W. Miersch, O. Kramell, R. and Strack, D. 2002. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol. 130:1213–1220.PubMedGoogle Scholar
  48. Jacquelinet-Jeanmougin, J., Gianinazzi-Pearson, V. and Gianinazzi, S. 1987. Endomycorrhizas in the Gentianaceae II. Ultrastructural aspects of symbiont relationships in Gentiana lutea L. Symbiosis 3:269–286.Google Scholar
  49. Jonak, C., Pay, A., Bogre, L., Hirt, H. and Heberle-Bors, E. 1993. The plant homologue of MAP kinase is expressed in a cell cycle-dependent and organ-specific manner. Plant J 3: 611–617.PubMedGoogle Scholar
  50. Journet, E. P., van Tuinen, D., Gouzy, J., Crespeau, H., Carreau, V., Farmer, M. J., Niebel, A., Schiex, T., Jaillon, O., Chatagnier, O., Godiard, L., Micheli, F., Kahn, D., Gianinazzi-Pearson, V. and Gamas, P. 2002. Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Res. 30:5579–5592.PubMedGoogle Scholar
  51. Journet, E. P., El-Gachtouli, N., Vernoud, V., de Billy, F., Pichon, M., Dedieu, A., Arnould, C., Morandi, D., Barker, D. G. and Gianinazzi-Pearson, V. 2001. Medicago truncatula ENOD 11:A novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol. Plant-Microbe. Interact. 14:737–748.Google Scholar
  52. Koka, C. V., Cerny, R. E., Gardner, R. G., Noguchi, T., Fujioka, S., Takatsuto, S., Yoshida. S. and Clouse, S. D. 2000. A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiol. 122: 85–98.PubMedGoogle Scholar
  53. Krajinski, F., Biela, A., Schubert, D., Gianinazzi-Pearson, V., Kaldenho., R. and Franken, P. 2000. Arbuscular mycorrhiza development regulates the mRNA abundance of Mtaqp1 encoding a mercury-insensitive aquaporin of Medicago truncatula. Planta 211:85–90.PubMedGoogle Scholar
  54. Krajinski, F., Hause, B., Gianinazzi-Pearson, V. and Franken, P. 2002. Mtha 1, a plasma membrane H +-ATPase gene from Medicago truncatula, shows arbuscule-specific induced expression in mycorrhizal tissue. Plant Biol. 4:754–761 NOV 2002Google Scholar
  55. Lapopin, L., Gianinazzi-Pearson, V. and Franken, P. 1999. Comparative Differential display analysis of arbuscular mycorrhiza in Pisum sativum and a mutant defective in late stage development. Plant Mol. Biol. 41:669–677.PubMedGoogle Scholar
  56. Lebrun-Garcia, A., Ouaked, F., Chilitz, A. and Pugin, A. 1998. Activation of MAPK homologues by elicitors in tobacco cells. Plant J. 15:773–781PubMedGoogle Scholar
  57. Ligterink, W., Kroj, T., zur Nieden, U., Hirt, H. and Scheel, D. 1997. Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276:2054–2057.PubMedGoogle Scholar
  58. Liu, J. Y., Blaylock, L. A., Endre, G., Cho, J., Town, C. D., VandenBosch, K. A. and Harrison, M. J. 2003. Transcript pro ling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123.PubMedGoogle Scholar
  59. Newman, E. I. and Reddell, P. 1987. The distribution of mycorrhizas among families of vascular plants. New Phytol. 106:745–751.Google Scholar
  60. Paszkowski, U., Kroken, S., Roux, C. and Briggs, S. P. 2002. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. P Natl. Acad. Sci. USA. 99:13324–13329.Google Scholar
  61. Quandt, H. J., Puhler, A. and Broer, I. 1993. Transgenic rootnodules of Vicia hirsuta-a fast and e. cient system for the study of gene-expression in indeterminate-type nodules. Mol. Plant-Microbe Interact. 6:699–706.Google Scholar
  62. Rathbun, E. A., Naldrett, M. J. and Brewin, N. J. 2002. Identification of a family of extensin-like glycoproteins in the lumen of Rhizobium-induced infection threads in pea root nodules. Mol. Plant-Microbe Interact. 15:350–359.PubMedGoogle Scholar
  63. Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G., Amrhein, N. and Bucher, M. 2001. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466.PubMedGoogle Scholar
  64. Read, D. J., Lewis, D. H., Fitter, A. H. and Alexander, I. J. 1992. Mycorrhizas in Ecosystems. CAB International, Oxford.Google Scholar
  65. Requena, N., Fueller, P. and Franken, P. 1999. Molecular characterisation of GmFOX 2, an evolutionary highly conserved gene from the mycorrhizal fungus Glomus mosseae, down-regulated during interaction with rhizobacteria. Mol. Plant-Microbe Interact. 12:934–942.PubMedGoogle Scholar
  66. Requena, N., Mann, P., Hampp, R. and Franken, P. 2002. Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae:identi cation of GmGIN 1, a novel gene with homology to the C-terminus of metazoan hedgehog proteins. Plant Soil 244:129–139.Google Scholar
  67. Rosewarne, G. M., Barker, S. J., Smith, S. E., Smith, F. A. and Schachtman, D. P. 1999. A Lycopersicon esculentum phosphate transporter (LePT1)involved in phosphorus uptake from a vesicular-arbuscular mycorrhizal fungus. New Phytol. 144 (3):507–516.Google Scholar
  68. Ruiz-Lozano, J. M., Roussel, H., Gianinazzi, S. and GianinazziPearson, V. 1999. Defense genes are Differentially induced by a mycorrhizal fungus and Rhizobium sp in wild-type and symbiosis-defective pea genotypes. Mol Plant-Microbe Interact 12:976–984.Google Scholar
  69. Salzer, P., Corbiere, H. and Boller, T. 1999. Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208:319–325.Google Scholar
  70. Salzer, P., Bonanomi, A., Beyer, K., Vögeli-Lange, R., Aeschbacher, R. A., Lange, J., Wiemken, A., Kim, D., Cook, D. R. and Boller, T. 2000. Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mol. Plant-Microbe Interact. 13:763–777.PubMedGoogle Scholar
  71. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor.Google Scholar
  72. Schoenbeck, M. A., Samac, D. A., Fedorova, M., Gregerson, R. G., Gantt, J. S. and Vance, C. P. 1999. The alfalfa (Medicago sativa )TDY1 gene encodes a mitogen-activated protein kinase homolog. Mol. Plant-Microbe Interact. 12: 882–893.PubMedGoogle Scholar
  73. Slezack, S., Dumas-Gaudot, E., Rosendahl, S., Kjoller, R., Paynot, M., Negrel, J. and Gianinazzi, S. 1999. Endoproteolytic activities in pea roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and/or Aphanomyces euteiches in relation to bioprotection. New Phytol. 142: 517–529.Google Scholar
  74. Slezack, S., Dumas-Gaudot, E., Paynot, M. and Gianinazzi, S. 2000. Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches? Mol. Plant-Microbe Interact. 13: 238–241.PubMedGoogle Scholar
  75. Smith, S. E., Gianinazzi-Pearson, V., Koide, R. and Cairney, J. W. G. 1993. Nutrient transport in mycorrhizas:structure, physiology and consequences for efficiency of the symbiosis. Plant Soil 159:103–113.Google Scholar
  76. Smith, F. A. and Smith, S. E. 1997. Tansley review no. 96: Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol. 137:373–388.Google Scholar
  77. Stafstrom, J. P., Altschuler, M. and Anderson, D. H. 1993. Molecular cloning and expression of a MAP kinase homologue from pea. Plant Mol. Biol. 22:83–90.PubMedGoogle Scholar
  78. Staehelin, C., Charon, C., Boller, T., Crespi, M. and Kondorosi, A. 2001. Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules. P Natl. Acad. Sci. USA. 98:15366–15371.Google Scholar
  79. Strittmatter, G., Gheysen, G., Gianinazzi-Pearson, V., Hahn, K., Niebel, A., Rohde, W. and Tacke, E. 1996. Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato Gst 1 gene. Mol. Plant-Microbe Interact. 9:68–73.PubMedGoogle Scholar
  80. Szabados, L., Charrier, B., Kondorosi, A., Debruijn, F. J. and Ratet, P. 1995. New plant promoter and enhancer testing vectors. Mol. Breed. 1:419–423.Google Scholar
  81. Tamasloukht, M., Sejalon-Delmas, N., Kluever, A., Jauneau, A., Roux, C., Be ´card, G. and Franken, P. 2003. Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol. 131:1468–1478.PubMedGoogle Scholar
  82. Timonen, S. and Peterson, R. L. 2002. Cytoskeleton in mycorrhizal symbiosis. Plant Soil 244:199–210.Google Scholar
  83. Toth, E. C., Vissi, E., Kovacs, I., Szoke, A., Arino, J., Gergely, P., Dudits, D. and Dombradi, V. 2000. Protein phosphatase 2A holoenzyme and its subunits from Medicago sativa. Plant Mol. Biol. 43:527–536.PubMedGoogle Scholar
  84. Trouvelot, A., Kough, J. L. and Gianinazzi-Pearson, V. 1986. Mesure du taux de mycorhization VA d 'un système radiculaire. Recherche des me ´thodes d 'estimation ayant une signication fonctionnelle. In:V. Gianinazzi-Pearson and S. Gianinazzi (Eds. ), The Mycorrhizae:Physiology and Genetic, INRA Presse, Paris, pp. 217–221.Google Scholar
  85. Van Buuren, M. L., Maldonado-Mendoza, I. E., Trieu, A. T., Blaylock, L. A. and Harrison, M. J. 1999. Novel genes induced during an arbuscular mycorrhizal (AM)symbiosis formed between Medicago truncatula and Glomus versiforme. Mol. Plant-Microbe Interact. 12:171–181.PubMedGoogle Scholar
  86. Wulf, A., Manthey, K., Doll, J., Perlick, A., Franken, P., Linke, B., Meyer, F., Ku ¨ster, H. and Krajinski, F. 2003. Detection of highly specific transcriptional changes of the model plant Medicago truncatula in response to arbuscular mycorrhiza development. Mol. Plant-Microbe Interact. 16: 306–314.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ulf Grunwald
    • 1
  • Oyunbileg Nyamsuren
    • 2
  • M'Barek Tamasloukht
    • 3
  • Laurence Lapopin
    • 4
  • Anke Becker
    • 5
  • Petra Mann
    • 1
  • Vivienne Gianinazzi-Pearson
    • 6
  • Franziska Krajinski
    • 7
  • Philipp Franken
    • 8
  1. 1.Max-Planck Institut für terrestrische Mikrobiologie, and Laboratorium für MikrobiologiePhilipps-UniversityKarl-von-Frisch-StrasseGermany
  2. 2.Department of Molecular GeneticsUniversity HannoverGermany
  3. 3.Plant Biochemistry and Physiology Group, Institute of Plant SciencesFederal Institute of Technology (ETH) Zurich, Experimental Station Eschikon 33Switzerland
  4. 4.Roche DiagnosticsGermany
  5. 5.Lehrstuhl fuer GenetikUniversity BielefeldGermany
  6. 6.UMR 1088 INRA/Universitè de Bourgogne, BBCE-IPM, INRA-CMSEFrance
  7. 7.Department of Molecular GeneticsUniversity HannoverGermany
  8. 8.Institute for Vegetables and Ornamental PlantsGermany

Personalised recommendations