Plant Molecular Biology

, Volume 55, Issue 3, pp 455–465 | Cite as

Characterization and structural features of a chalcone synthase mutation in a white-flowering line of Matthiola incanaR. Br. (Brassicaceae)

  • Vera Hemleben
  • Angela Dressel
  • Bernhard Epping
  • Richard Lukačin
  • Stefan Martens
  • Michael Austin


For Matthiola incana (Brassicaceae), used as a model system to study biochemical and genetical aspects of anthocyanin biosynthesis, several nearly isogenic colored wild type lines and white-flowering mutant lines are available, each with a specific defect in the genes responsible for anthocyanin production (genes e, f, and g). For gene f supposed to code for chalcone synthase (CHS; EC, the key enzyme of the flavonoid/anthocyanin biosynthesis pathway belonging to the group of type III polyketide synthases (PKS), the wild type genomic sequence of M. incana line 04 was determined in comparison to the white-flowering CHS mutant line 18. The type of mutation in the chs gene was characterized as a single nucleotide substitution in a triplet AGG coding for an evolutionary conserved arginine into AGT coding for serine (R72S). Northern blots and RT-PCR demonstrated that the mutated gene is expressed in flower petals. Heterologous expression of the wild type and mutated CHS cDNA in E. Scherichia coli, verified by Western blotting and enzyme assays with various starter molecules, revealed that the mutant protein had no detectable activity, indicating that the strictly conserved arginine residue is essential for the enzymatic reaction. This mutation, which previously was not detected by mutagenic screening, is discussed in the light of structural and functional information on alfalfa CHS and related type III PKS enzymes.

anthocyanin evolution flavonoid biosynthesis Medicago sativa polyketide synthase protein structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, I., Sano, Y., Takahashi, Y. and Noguchi, H. 2003. Sitedirected mutagenesis of benzalacetone synthase: the role of phe215 in plant type III polyketide synthases. JBC 278(27): 25218–25226.Google Scholar
  2. Austin, M. B. and Noel, J. P. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20: 79–120.PubMedGoogle Scholar
  3. Austin, M. B., Bowman, M. E., Ferrer, J., Schröder, J. and Noel, J. P. An aldol switch discovered in stilbene synthases mediates aldol cyclization specificity of type III polyketides synthases. Chem. Biol. (in press).Google Scholar
  4. Batschauer, A., Ehmann, B. and Schäfer, E. 1991. Cloning and characterization of a chalcone synthase gene from mustard and its light-dependent expression. Plant Mol. Biol. 16: 175–185.PubMedGoogle Scholar
  5. Chappel, J. and Hahlbrock, K. 1984. Transcription of plant defence genes in response to UV-light or fungal elicitor. Nature 311: 76–78.Google Scholar
  6. Dixon, R. A. and Steele, C. L. 1999. Flavonoids and isoflavonoids–a gold mine for metabolic genetic engineering. Trends Plant Sci. 4: 394–400.PubMedGoogle Scholar
  7. Dooner, H. K., Robbins, T. P. and Jorgensen, R. A. 1991. Genetic and developmental control of anthocyanin biosynthesis. Annu. Rev. Genet. 25: 173–199.PubMedGoogle Scholar
  8. Durbin, M. L., McCaig, B. and Clegg, M. T. 2000. Molecular evolution of the chalcone synthase multigene family in the morning glory genome. Plant Mol. Biol. 42: 79–92.PubMedGoogle Scholar
  9. Epping, B., Kittel, M., Ruhnau, B. and Hemleben, V. 1990. Isolation and sequence analysis of a chalcone synthase cDNA of Matthiola incana R. Br. (Brassicaceae). Plant Mol. Biol. 14: 1061–1064.PubMedGoogle Scholar
  10. Feinbaum, R. L. and Ausubel, F. M. 1988. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol. Cell Biol. 8: 1985–1992.PubMedGoogle Scholar
  11. Ferrer, J.-L., Jez, J. M., Bowman, M. E., Dixon, R. A. and Noel, J. P. 1999. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nature Struct. Biol. 6: 775–783.PubMedGoogle Scholar
  12. Forkmann, G. and Heller, W. 1999. Biosynthesis of flavonoids. In: S. Barton, O. Meth-Cohn (Eds.) Comprehensive Natural Products Chemistry, vol. 1, pp.713–748.Google Scholar
  13. Forkmann, G. and Martens, S. 2001. Metabolic engineering and applications of flavonoids. Curr. Opin. Biotechnol. 12: 155–160.PubMedGoogle Scholar
  14. Gebhardt, C., Ritter, E., Debener, T., Schachtschabel, U., Walkemeier, B., Uhrig, H. and Salamini, F. 1989. RFLP analysis and linkage mapping in Solanum tuberosum. Theor. Appl. Genet. 78: 65–75.Google Scholar
  15. Hartmann, U., Valentine, W. J., Christie, J. M., Hays, J., Jenkins, G. I. and Weisshaar, B. 1998. Identification of UV/ blue-light response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol. Biol. 36: 741–754.PubMedGoogle Scholar
  16. Heller, W., Britsch, L., Forkmann, G. and Grisebach, H. 1985. Leucoanthocyanidins as intermediates in anthocyanidin biosynthesis in flowers of Matthiola incana. Planta 163: 191–196.Google Scholar
  17. Hemleben V., Frey, M., Rall, S., Koch, M., Kittel, M., Kreuzaler, F., Ragg, H., Fautz, E. and Hahlbrock, K. 1982. Studies on the chalcone synthase gene of two higher plants: Petroselinum hortense and Matthiola incana. In: M. M. Burger, R. Weber, (Eds.) Embryonic Development. Part B: Cellular Aspects. ARL, New York pp. 555–566.Google Scholar
  18. Hirner, A. A. and Seitz, H. U. 2000. Isoforms of chalcone synthase in Daucus carota L. and their differential expression in organs from the European wild carrot and in ultraviolet-Airradiated cell cultures. Planta 210: 993–998.PubMedGoogle Scholar
  19. Jez, J. M. and Noel, J. P. 2000. Mechanisms of chalcone synthase: pKa of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase. J. Biol. Chem. 275: 39640–39646.PubMedGoogle Scholar
  20. Jez, J. M., Austin, M. B., Ferrer, J.-L., Bowman, M. E., Schröder, J. and Noel, J. P. 2000a. Structural control of polyketide formation in plant-specific polyketide synthases. Chem. Biol. 7: 919–930.PubMedGoogle Scholar
  21. Jez, J. M., Ferrer, J.-L., Bowman, M. E., Dixon, R. A. and Noel, J. P. 2000b. Dissection of malonyl-CoA decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39: 890–902.PubMedGoogle Scholar
  22. Jez, J. M., Ferrer, J.-L., Bowman, M. E., Austin, M. B., Schröder, J., Dixon, R. A. and Noel, J. P. 2001. Structure and mechanism of chalcone synthase-like polyketide synthases. J. Indust. Microbiol. Biotechnol. 27: 393–398.Google Scholar
  23. Kappert, H. 1949. Die Genetik des incana-Charakters und der Anthozyanbildung bei der Levkoje. Der Züchter 19: 289–297.Google Scholar
  24. Kay, R., Chan, A., Damy, M. and McPherson, J. 1987. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236: 1299–1302.Google Scholar
  25. Kessler, S. W. 1981. Use of protein A-bearing staphylococci for the immune precipitation and isolation of antigens from cells. Meth. Enzymol. 73: 442–459.PubMedGoogle Scholar
  26. Koch, M. A., Weisshaar, B., Kroymann, J., Haubold, B. and Mitchell-Olds, T. 2001. Comparative genomics and regulatory evolution: conservation and function of the Chs and Apetala3 promoters. Mol. Biol. Evo. 18: 1882–1891.Google Scholar
  27. Kowalczyk, E., Krzesinski, P., Kura, M., Szmigiel, B. and Blaszczyk, J. 2003. Anthocyanins in medicine. Pol. J. Pharmacol. 55: 699–702.PubMedGoogle Scholar
  28. Lämmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.PubMedGoogle Scholar
  29. Larkin, J. C., Oppenheimer, D. G., Lloyd, A. M., Paparozzi and Marks, M. D. 1994. Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development. Plant Cell 6:1065–1076.PubMedGoogle Scholar
  30. Lukačin, R., Springob, K., Urbanke, C., Ernwein, C., Schröder, G., Schröder, J. and Matern, U. 1999. Native acridone synthases I and II from Ruta graveolens form homodimers. FEBS Lett. 448: 135–140.PubMedGoogle Scholar
  31. Lukačin, R., Gröning, I., Schiltz, E., Britsch, L. and Matern, U. 2000. Purification of recombinant flavanone 3b-hydroxylase from Petunia hybrida and assignment of the primary site of proteolytic degradation. Arch. Biochem. Biophys. 375: 364–370.PubMedGoogle Scholar
  32. Lukačin, R., Schreiner, S. and Matern, U. 2001. Transformation of acridone synthase to chalcone synthase. FEBS Lett. 508: 413–417.PubMedGoogle Scholar
  33. Lloyd, A. M., Walbot, V. and Davis, R. W. 1999. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258: 1773–1775.Google Scholar
  34. Martin, C. R. 1993. Structure, function, and regulation of the chalcone synthase. Int. Rev. Cytology, 147: 233–284.Google Scholar
  35. Mettenleiter, T., Lukacs, N. and Rhiza, H. J. 1985. Mapping of the structural gene of Pseudorhabies Virus glycoprotein A and identification of two non-glycosylated precursor polypeptides. J. Virol. 53: 52–57.PubMedGoogle Scholar
  36. Moore, B. S. and Hopke, J. N. 2001. Discovery of a new bacterial polyketide biosynthetic pathway. Chem. Bio. Chem. 2: 35–38.PubMedGoogle Scholar
  37. Niesbach-Klösgen, U., Barzen, E., Bernhardt, J., Rhode, W., Schwarz-Sommer, Z., Reif, H. J., Wienand, U. and Saedler, H. 1987. Chalcone synthase genes in plants: a tool to study evolutionary relationships. J. Mol. Evo. 26: 213–225.Google Scholar
  38. Rall, S. and Hemleben, V. 1984. Characterization and expression of chalcone synthase in different genotypes of Matthiola incana. Plant. Mol. Biol. 3: 137–145.Google Scholar
  39. Ramsay, N. A., Walker, A. R., Mooney, M. and Gray, G. C. 2003. Two basic-loop-helix genes (MYC-146 and GL3 ) from Arabidopsis can activate anthocyanin biosynthesis in a 464 white-flowered Matthiola incana mutant. Plant Mol. Biol. 52: 679–688.PubMedGoogle Scholar
  40. Rausher, M. D., Miller, R. E. and Tiffin, TP. 1999. Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Mol. Biol. Evol. 16: 266–274.PubMedGoogle Scholar
  41. Reimold, U., Kröger, M., Kreuzaler, F. and Hahlbrock, K. 1983. Coding and 3' non-coding nucleotide sequence of chalcone synthase mRNA and assignment of amino acid sequence of the enzyme. EMBO J. 2: 1801–1805.Google Scholar
  42. Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A. and Allard, R. W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81: 8014–8018.PubMedGoogle Scholar
  43. Sali, A. and Blundell, T. L. 1993. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234: 779–815.PubMedGoogle Scholar
  44. Sandermann, H. and Strominger, L. 1976. Purification and properties of C55-isoprenoid alcohol phosphokinase from Staphylococcus aureus. J. Biol. Chem. 247: 5123–5131.Google Scholar
  45. Saslowsky, D. E., Dana, D. D. and Winkel-Shirley, B. 2000. An allelic series for the chalcone synthase locus in Arabidopsis. Gene 255: 127–138.PubMedGoogle Scholar
  46. Schröder, G., Brown, J. W. S. and Schröder J. 1988. Molecular analysis of resveratrol synthase: cDNA, genomic clones and relationship with chalcone synthase. Eur. J. Biochem. 172: 161–169.Google Scholar
  47. Schröder, J. 1997. Afamily of plant-specific polyketide synthases: facts and predictions. Trends Plant Sci. 2: 373–378.Google Scholar
  48. Seyffert, W. 1971. Simulation of quantitative characters by genes with biochemically definable action. II. The material. Theor. Appl. Genet. 41: 285–291.Google Scholar
  49. Seyffert, W. 1982. Beiträge zur Genetik und Enzymologie der Flavonoide. Biol. Zbl. 101: 465–483.Google Scholar
  50. Spribille, R. and Forkmann, G. 1981. Genetic control of chalcone synthase activity in flowers of Matthiola incana R. Br. Z. Naturforschg. 36c: 619–624.Google Scholar
  51. Springob, K., Nakajima J., Yamazaki, M. and Saito, K. 2003. Recent advances in the biosynthesis and accumulation of anthocyanins. Nat. Prod. Rep. 20: 288–303.PubMedGoogle Scholar
  52. Szymanski, D. B., Lloyd, A. M. and Marks M. D. 2000. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci. 5: 214–219.PubMedGoogle Scholar
  53. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.PubMedGoogle Scholar
  54. Towbin, H., Staehlin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350–4354.PubMedGoogle Scholar
  55. Tropf, S., Kärcher, B., Schröder, G. and Schröder, J. 1995. Reaction mechanisms of homodimeric plant polyketide synthases (stilbene and chalcone synthases): a single active site for the condensing reaction is sufficient for synthesis of stilbenes, chalcones, and 6'-deoxychalcones. J Biol. Chem. 270: 7922–7928.PubMedGoogle Scholar
  56. Walker, A. R., Davison, P. A., Bolognesi-Winfield, A. C., James, C. M. and Srinivasan, N. 1999. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell. 11: 1337–1350.PubMedGoogle Scholar
  57. Weisshaar, B., Armstrong, G. A., Block, A., Costa e Silva O. and Hahlbrock K. 1991. Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness. EMBO J. 10: 1777–1786.PubMedGoogle Scholar
  58. Yamazaki, Y., Suh, D. Y., Sitthithaworn, W., Ishiguro, K., Kobayashi, Y., Shibuya, M., Ebizuka, Y. and Sankawa, U. 2001. Diverse chalcone synthase superfamily enzymes from the most primitive vascular plant, Psilotum nudum. Planta 214: 75–84.PubMedGoogle Scholar
  59. Zheng, D., Schröder, G., Schröder, J. and Hrazdina, G. 2001. Molecular and biochemical characterization of three aromatic polyketide synthase genes from Rubus idaeus. Plant Mol. Biol. 46: 1–15.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Vera Hemleben
    • 1
  • Angela Dressel
    • 1
  • Bernhard Epping
    • 1
  • Richard Lukačin
    • 2
  • Stefan Martens
    • 2
  • Michael Austin
    • 3
  1. 1.Department of General Genetics, Center of Plant Molecular Biology (ZMBP)University of TübingenGermany
  2. 2.Institute for Pharmaceutical BiologyPhilipps-University MarburgDeutschhausstrGermany
  3. 3.Structural Biology Laboratory – Noel groupThe Salk Institute for Biological StudiesUSA

Personalised recommendations