Plant Molecular Biology

, Volume 55, Issue 3, pp 327–342 | Cite as

Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray

  • Yoshihiro narusaka
  • Mari Narusaka
  • Motoaki Seki
  • Taishi Umezawa
  • Junko Ishida
  • Maiko Nakajima
  • Akiko Enju
  • Kazuo Shinozaki


From Arabidopsis full-length cDNA libraries, we collected ca. 7000 (7K) independent full-length cDNAs to prepare a cDNA microarray. The 7K cDNA collection contains 49 cytochrome P450 genes. In this study, expression patterns of these cytochrome P450 genes were analyzed by a full-length cDNA microarray under various treatments, such as hormones (salicylic acid, jasmonic acid, ethylene, abscisic acid), pathogen-inoculation (Alternaria brassicicola, Alternaria alternata), paraquat, rose bengal, UV stress (UV-C), heavy metal stress (CuSO_4), mechanical wounding, drought, high salinity and low temperature. Expression of 29 cytochrome P450 genes among them was induced by various treatments. Inoculation with A. brassicicola and A. alternata as biotic stresses increased transcript levels of 12 and 5 genes in Arabidopsis plants, respectively. In addition, some of the genes were also expressed by abiotic stresses. This suggests crosstalk between abiotic and biotic stresses. The promoter sequences and cis-acting elements of each gene were studied on the basis of full-length cDNA sequences. Most cytochrome P450 genes induced by both abiotic and biotic stresses contained the recognition sites of MYB and MYC, ACGT-core sequence, TGA-box and W-box for WRKY transcription factors in their promoters. These cis-acting elements are known to participate in the regulation of plant defense. The response of each gene to multiple stresses is strictly regulated.

Arabidopsis cytochrome P450 full-length cDNA microarray 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K., 1997. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acidregulated gene expression. Plant Cell 9: 1859–1868.PubMedGoogle Scholar
  2. Babu, T. S., Akhtar, T. A., Lampi, M. A., Tripuranthakam, S., Dixon, D. G. and Greenberg, B. M. 2003. Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: implication of reactive oxygen species as common signals. Plant Cell Physiol. 44:1320–1329.PubMedGoogle Scholar
  3. Bak, S., Tax, F. E., Feldman, K. A., Galbraith, D. W. and Feyereisen, R. 2001. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 101–111.PubMedGoogle Scholar
  4. Batard, Y., LeRet, M., Schalk, M., Robineau, T., Durst, F. and Werck-Reichhart, D. 1998. Molecular cloning and functional expression in yeast of CYP76B1, a xenobiotic-inducible 7-ethoxycoumarin O-de-ethylase from Helianthus tuberosus. Plant J. 14: 111–120.PubMedGoogle Scholar
  5. Block, A., Dangl, J. L., Hahlbrock, K. and Schulze-Lefert, P. 1990. Functional borders, genetic fine structure, and distance requirements of cis elements mediating light responsiveness of the parsley chalcone synthase promoter. Proc. Natl. Acad. Sci. USA 87: 5387–5391.PubMedGoogle Scholar
  6. Bolwell, G. P., Bozak, K. and Zimmerlin, A. 1994. Plant cytochrome P450. Phytochemistry 37: 1491–1506.PubMedGoogle Scholar
  7. Bowler, C., Van Montagu, M. and Inze, D. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83–116.Google Scholar
  8. Busk, P. K. and Pages, M. 1998. Regulation of abscisic acidinduced transcription. Plant Mol. Biol. 37: 425–435.PubMedGoogle Scholar
  9. Chapple, C. 1998. Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 311–343.PubMedGoogle Scholar
  10. Desikan, R., Mackerness, S. A. H., Hancock, J. T. and Neill, S. J. 2001. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127: 159–172.PubMedGoogle Scholar
  11. Donald, R. G. K. and Cashmore, A. R. 1990. Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J. 9: 1717–1726.PubMedGoogle Scholar
  12. Donaldson, R. P. and Luster, D. G. 1991. Multiple forms of plant cytochromes P450. Plant Physiol. 96: 669–674.Google Scholar
  13. Eisen, M. B. and Brown, P. O. 1999. DNA arrays for analysis of gene expression. Methods Enzymol. 303: 179–205.PubMedGoogle Scholar
  14. Eulgem, T., Rushton, P. J., Robatzek, S. and Somssich, I. E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199–206.PubMedGoogle Scholar
  15. Eyal, Y., Meller, Y., Lev-Yadun, S. and Fluhr, R. 1993. A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J. 4: 225–234.PubMedGoogle Scholar
  16. Fahrendorf, T. and Dixon, R. A. 1993. Stress responses in alfalfa (Medicago sativa L. ). XVIII: molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450. Arch. Biochem. Biophys. 305: 509–515.PubMedGoogle Scholar
  17. Frank, M. R., Deyneka, J. M. and Schuler, M. A. 1996. Cloning of wound-induced cytochrome P450 monooxygenases expressed in pea. Plant Physiol. 110: 1035–1046.PubMedGoogle Scholar
  18. Garreton, V., Carpinelli, J., Jordana, X. and Holuigue, L. 2002. The as-1 promoter element is an oxidative stressresponsive element and salicylic acid activates it via oxidative species. Plant Physiol. 130: 1516–1526.PubMedGoogle Scholar
  19. Godiard, L, Sauviac, L., Dalbin, N., Liaubet, L., Callard, D., Czernic, P and Marco, Y. 1998. CYP76C2, an Arabidopsis thaliana cytochrome P450 gene expressed during hypersensitive and developmental cell death. FEBS Lett. 438: 245–249.PubMedGoogle Scholar
  20. Green., and Fluhr., 1995. UV-B-induced PR-1 accumulation is mediated by active oxygen species. Plant Cell 7: 203–212.PubMedGoogle Scholar
  21. Guan., and Scandalios, J. G. 1993. Characterization of the catalase antioxidant defense gene Cat1 of maize and its developmentally regulated expression in transgenic tobacco. Plant J. 3: 527–536.PubMedGoogle Scholar
  22. Guan, L. M., Zhao, J. and Scandalios, J. G. 2000. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J. 22: 87–95.PubMedGoogle Scholar
  23. Guiltinan, M. J., Marcotte, W. R. and Quatrano, R. S. 1990. A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–271.PubMedGoogle Scholar
  24. Halkier, B. A. and Du, L. 1997. The biosynthesis of glucosinolates. Trends Plant Sci. 11: 425–430.Google Scholar
  25. Hansen, C. H., Du, L., Naur, P., Olsen, C. E., Axelsen, K. B., Hick, A. J, Pickett, J. A and Halkier, B. A. 2001. CYP83B1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. J. Biol. Chem. 276: 24790–24796.PubMedGoogle Scholar
  26. Hattori, T., Totsuka, M., Hobo, T., Kagaya, Y. and Yamamoto-Toyoda, A. 2002. Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol. 43: 136–40.PubMedGoogle Scholar
  27. Hatzios, K. K. 1991. Biotransformations of herbicides in higher plants. In: R. Grover and A. J. Cessna (s. ) Environmental Chemistry of Herbicides, vol. 2, CRC Press, Boca Raton, FL., pp. 1451–1185.Google Scholar
  28. Hernandes, J. A., Olmos, E., Corpas, F. J., Sevilla, F. and del Rio, L. A. 1995. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105: 151–167.Google Scholar
  29. Hull, A. K., Vij, R. and Celenza, J. L. 2000. Arabidopsis cytochrome P450s that catalyze the first step of tryptophandependent indole-3-acetic acid biosynthesis. Proc. Natl. Acad. Sci. USA 97: 2379–2384.PubMedGoogle Scholar
  30. Iwasaki, T., Kiyosue, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1997. The dehydration-inducible RD17 (Cor47) gene and its promoter region in Arabidopsis thaliana (accession no. AB004872) (PGR97–156). Plant Physiol. 115: 1287.PubMedGoogle Scholar
  31. Kutchan, T. M. 1995. Alkaloid biosynthesis–The basis for metabolic engineering of medicinal plants. Plant Cell 7: 1059–1070.PubMedGoogle Scholar
  32. Lam, E., Benfey, P. N., Gilmartin, P. M., Fang, R.-X. and Chua, N.-H. 1989. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc. Natl. Acad. Sci. USA 86: 7890–7894.PubMedGoogle Scholar
  33. Leon, J., Yalpani, N. and Lawton, M. A. 1993. Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco Plant Physiol. 103: 323–328.PubMedGoogle Scholar
  34. Loake, G. J., Faktor, O., Lamb, C. J. and Dixon, R. A. 1992. Combination of H-box [CCTACC(N)7CT] and G-box (CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid. Proc. Natl. Acad. Sci. USA. 89: 9230–9234.PubMedGoogle Scholar
  35. Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., Dangl, J. L. and Dietrich, R. A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26: 403–410.PubMedGoogle Scholar
  36. Marcotte, W. R., Jr., Russell, S. H. and Quatrano, R. S. 1989. Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell 1: 969–976.PubMedGoogle Scholar
  37. Mason, H. S., DeWald, D. B. and Mullet, J. E. 1993. Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell 5: 241–251.PubMedGoogle Scholar
  38. Mckendree, W. L. and Ferl, R. J. 1992. Functional elements of the Arabidopsis Adh promoter include the G-box. Plant Mol. Biol. 19: 859–862.PubMedGoogle Scholar
  39. Mehdy, M. C. 1994. Active oxygen species in plant defense against pathogen. Plant Physiol. 105: 467–472.PubMedGoogle Scholar
  40. Miki, R., Kadota, K., Bono, H., Mizuno, Y., Tomaru, Y., Carninci, P., Itoh, M., Shibata, K., Kawai, J., Konno, H., Watanabe, S., Sato, K., Tokusumi, Y., Kikuchi, N., Ishii, Y., Hamaguchi, Y., Nishizuka, I., Goto, H., Nitanda, H., Satomi, S., Yoshiki, A., Kusakabe, M., DeRisi, J. L., Eisen, M. B., Iyer, V. R., Brown, P. O., Muramatsu, M., Shimada, H., Okazaki, Y. and Hayashizaki, Y. 2001. Delineating developmental and metabolic pathways in vivo by expression profiling using the RIKEN set of 18, 816 full-length enriched mouse cDNA arrays. Proc. Natl. Acad. Sci. USA 98: 2199–2204.PubMedGoogle Scholar
  41. Mikkelsen, M. D., Hansen, C. H., Wittstock, U. and Halkier, B. A. 2000. Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J. Biol. Chem. 275: 33712–33717.PubMedGoogle Scholar
  42. Mikkelsen, M. D., Petersen, B. L., Glawischnig, E., Jensen, A. B., Andreasson, E. and Halkier, B. A. 2003. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol. 131: 298–308.PubMedGoogle Scholar
  43. Mittler, R. and Zilinskas, B. A. 1994. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J. 5: 397–405.PubMedGoogle Scholar
  44. Mizutani, M., Ward, E. and Ohta, D. 1998. Cytochrome P450 superfamily in Arabidopsis thaliana: isolation of cDNAs, differential expression, and RFLP mapping of multiple cytochromes P450. Plant Mol. Biol. 37: 39–52.PubMedGoogle Scholar
  45. Mundy, J., Yamaguchi-Shinozaki, K. and Chua, N.-H. 1990. Nuclear proteins bind conserved elements in the abscisic acidresponsive promoter of a rice rab gene. Proc. Natl. Acad. Sci. USA 87: 1406–1410.PubMedGoogle Scholar
  46. Narusaka, Y., Narusaka, M., Seki, M., Fujita, M., Ishida, J., Nakashima, M., Enju, A., Sakurai, T., Satou, M., Kamiya, A., Park, P., Kobayashi, M. and Shinozaki, K. 2003a. Expression profiles of Arabidopsis phospholipase A IIA gene in response to biotic and abiotic stresses. Plant Cell Physiol. 44: 1246–1252PubMedGoogle Scholar
  47. Narusaka, Y., Narusaka, M., Seki, M., Ishida, J., Nakashima, M., Enju, A., Kamiya, A., Sakurai, T., Satoh, M., Kobayashi, M., Tosa, Y., Park, P. and Shinozaki, K. 2003b. The cDNA microarray analysis using an Arabidopsis pad3 mutant reveals the expression profiles and classification of genes induced by Alternaria brassicicola attack. Plant Cell Physiol. 44: 377–387.PubMedGoogle Scholar
  48. Normanly, J. and Bartel, B. 1999. Redundancy as a way of life–IAA metabolism. Curr. Opin. Plant Biol. 2: 207–213.PubMedGoogle Scholar
  49. Paquette, S. M., Bak, S. and Feyereisen, R. 2000. Intron-exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana. DNA Cell Biol. 19: 307–317.PubMedGoogle Scholar
  50. Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Metraux, J.-P. and Broekaert, W. F. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10: 2103–2113.PubMedGoogle Scholar
  51. Radwanski, E. R. and Last, R. L. 1995. Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. Plant Cell 7: 921–934.PubMedGoogle Scholar
  52. Rao, M. V., Lee, H.-I., Creelman, R. A., Mullet, J. E. and Davis, K. R. 2000. Jasmonic acid signaling modulates ozoneinduced hypersensitive cell death. Plant Cell 12: 1633–1646.PubMedGoogle Scholar
  53. Reuveni, M., Agapov, V. and Reuveni, R. 1997. A foliar spray of micronutrient solutions induces local and systemic protection against powdery mildew (Sphaerotheca fuliginia) in cucumber plants. Europ. J. Plant Pathol. 103: 581–588.Google Scholar
  54. Reymond, P., Weber, H., Damond, M. and Farmer, E. E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12: 707–719.PubMedGoogle Scholar
  55. Riviere, J. L. and Cabbane, F. 1987. Animal and plant cytochrome P450 systems. Biochemie 69: 743–752.Google Scholar
  56. Rushmore, T. H., Morton, M. R. and Pickett, C. B. 1991. The antioxidant responsive element. J. Biol. Chem. 266: 11632–11639.PubMedGoogle Scholar
  57. Sandermann, H. 1992. Xenobiotics. Trends Biochem. Sci. 17: 82–84.PubMedGoogle Scholar
  58. Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.PubMedGoogle Scholar
  59. Schopfer, C. R. and Ebel, J. 1998. Identification of elicitorinduced cytochrome P450s of soybean (Glycine max L. ) using differential display of mRNA. Mol. Gen. Genet. 258: 315–322.PubMedGoogle Scholar
  60. Schuler, M. A. 1996. Plant cytochrome P450 monooxygenases. Crit. Rev. Plant Sci. 15: 235–284.Google Scholar
  61. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y. and Shinozaki, K. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13: 61–72.PubMedGoogle Scholar
  62. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002a. Monitoring the expression profiles of ca. 7000 Arabidopsis genes under drought, cold, and highsalinity stresses using a full-length cDNA microarray. Plant J 31: 279–292.PubMedGoogle Scholar
  63. Seki, M., Narusaka, M., Kamiya, A., Ishida, J., Satou, M., Sakurai, T., Nakajima, M., Enju, A., Akiyama, K., Oono, Y., Muramatsu, M., Hayashizaki, Y., Kawai, J., Carninci, P., Itoh, M., Ishii, Y., Arakawa, T., Shibata, K., Shinagawa, A., and Shinozaki, K. 2002b. Functional annotation of a full-length Arabidopsis cDNA collection. Science 296: 141–145.PubMedGoogle Scholar
  64. Seo, S., Sano, H. and Ohashi, Y. 1997. Jasmonic acid in wound signal transduction pathways. Physiol. Plant 101: 740–745.Google Scholar
  65. Shah, J., Kachroo, P. and Klessig, D. F. 1999. The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant Cell 11: 191–206.PubMedGoogle Scholar
  66. Shen, Q., Zhang, P. and Ho, T. H. D. 1996. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8: 1107–1119.PubMedGoogle Scholar
  67. Shen, Q. and Ho, T. H. D. 1995. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7: 295–307.PubMedGoogle Scholar
  68. Shinozaki, K. and Yamaguchi-Shinozaki, K. 1999. Molecular responses to drought stress. In: K. Shinozaki and K. Yamaguchi-Shinozaki (s.) Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants, R. G. Landes Co., Austin, Texas: pp. 11–28.Google Scholar
  69. Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217–223.PubMedGoogle Scholar
  70. Smolen, G. and Bender, J. 2002. Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. Genetics 160: 323–332.PubMedGoogle Scholar
  71. Teutsch, H. G., Hasenfralz, M. P., Lesot, A., Stolz, C., Garnier, J. M., Jeltsch, J. M., Durst, F. and Werck-Reichhart, D. 1993. Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc. Natl. Acad. Sci. USA 90: 4102–4106.PubMedGoogle Scholar
  72. Thomma, B. P. H. J., Eggermont, K., Tierens, K. F. and Broekaert, W. F. 1999a. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121: 1093–1101.PubMedGoogle Scholar
  73. Thomma, B. P. H. J., Eggermont, K., Penninckx, I. A. M. A., Mauch-Mani, B., Vogelsang, R., Cammue, B. P. A. and Broekaert, W. F. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Sci. USA 95: 15107–15111.Google Scholar
  74. Thomma, B. P. H. J., Nelissen, I., Eggermont, K. and Broekaert, W. F. 1999b. Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alteraria brassicicola. Plant J. 19: 163–171.PubMedGoogle Scholar
  75. Tierens, K. F., Thomma, B. P., Bari, R. P., Garmier, M., Eggermont, K., Brouwer, M., Penninckx, I. A., Broekaert, W. F. and Cammue, B. P. 2002. Esa1, an Arabidopsis mutant with enhanced susceptibility to a range of necrotrophic fungal pathogens, shows a distorted induction of defense responses by reactive oxygen generating compounds. Plant J. 29: 131–40.PubMedGoogle Scholar
  76. Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. A novel cisacting element in an Arabidopsis gene is involved in respon-siveness to drought, low-temperature, or high-salinity stress. Plant Cell 6: 251–264PubMedGoogle Scholar
  77. Zhao, J. and Last, R. L. 1996. Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis. Plant Cell 8: 2235–2244.PubMedGoogle Scholar
  78. Zhao, J., Williams, C. C. and Last, R. L. 1998. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell 10: 359–370.PubMedGoogle Scholar
  79. Zhao, Y., Hull, A. K., Gupta, N. R., Goss, K. A., Alonso, J., Ecker, J. R., Normanly, J., Chory, J. and Celenza, J. L. 2002. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Develop. 16: 3100–3112.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Yoshihiro narusaka
    • 1
    • 2
  • Mari Narusaka
    • 1
    • 3
  • Motoaki Seki
    • 2
    • 3
  • Taishi Umezawa
    • 3
  • Junko Ishida
    • 3
  • Maiko Nakajima
    • 3
  • Akiko Enju
    • 3
  • Kazuo Shinozaki
    • 2
    • 3
  1. 1.Department of BiologyTokyo Gakugei UniversityKoganei-shiJapan
  2. 2.Laboratory of Plant Molecular BiologyRIKEN Tsukuba InstituteJapan
  3. 3.Plant Mutation Exploration Team, Plant Functional Genomics Research Group, RIKEN Genomic Sciences Center (GSC)RIKEN Yokohama InstituteJapan

Personalised recommendations