Advertisement

Plant Molecular Biology

, Volume 54, Issue 6, pp 817–835 | Cite as

Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism

  • Sabine Glombitza
  • Pierre-henri Dubuis
  • Oliver Thulke
  • Gerhard Welzl
  • Lucien Bovet
  • Michael Götz
  • Matthias Affenzeller
  • Birgit Geist
  • Alain Hehn
  • Carole Asnaghi
  • Dieter Ernst
  • Harald Seidlitz
  • Heidrun Gundlach
  • Klaus Mayer
  • Enrico Martinoia
  • Daniele Werck-reichhart
  • Felix Mauch
  • Anton Schäffner
Article

Abstract

Plant secondary metabolism significantly contributes to defensive measures against adverse abiotic and biotic cues. To investigate stress-induced, transcriptional alterations of underlying effector gene families, which encode enzymes acting consecutively in secondary metabolism and defense reactions, a DNA array (MetArray) harboring gene-specific probes was established. It comprised complete sets of genes encoding 109 secondary product glycosyltransferases and 63 glutathione-utilizing enzymes along with 62 cytochrome P450 monooxygenases and 26 ABC transporters. Their transcriptome was monitored in different organs of unstressed plants and in shoots in response to herbicides, UV-B radiation, endogenous stress hormones, and pathogen infection. A principal component analysis based on the transcription of these effector gene families defined distinct responses and crosstalk. Methyl jasmonate and ethylene treatments were separated from a group combining reactions towards two sulfonylurea herbicides, salicylate and an avirulent strain of Pseudomonas syringae pv. tomato. The responses to the herbicide bromoxynil and UV-B radiation were distinct from both groups. In addition, these analyses pinpointed individual effector genes indicating their role in these stress responses. A small group of genes was diagnostic in differentiating the response to two herbicide classes used. Interestingly, a subset of genes induced by P. syringae was not responsive to the applied stress hormones. Small groups of comprehensively induced effector genes indicate common defense strategies. Furthermore, homologous members within branches of these effector gene families displayed differential expression patterns either in both organs or during stress responses arguing for their non-redundant functions.

: gene families glutathione-dependent enzymes glycosyltransferases herbicides pathogen stress hormones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bak, S., Tax, F.E., Feldmann, K.A., Galbraith, D.W. and Feyereisen, R. 2001. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 101–111.PubMedGoogle Scholar
  2. Batard, Y., Schalk, M., Pierrel, M.A., Zimmerlin, A., Durst, F. and Werck-Reichhart, D. 1997. Regulation of the cinnamate 4-hydroxylase (CYP73A1) in Jerusalem artichoke tubers in response to wounding and chemical treatments. Plant Physiol. 113: 951–959.PubMedGoogle Scholar
  3. Bell-Lelong, D.A., Cusumano, J.C., Meyer, K. and Chapple, C. 1997. Cinnamate-4-hydroxylase expression in Arabidopsis. Regulation in response to development and the environment. Plant Physiol. 113: 729–738.PubMedGoogle Scholar
  4. Bovet, L., Eggmann, T., Meylan-Bettex, M., Polier, J., Kammer, P., Marin, E., Feller, U. and Martinoia, E. 2003. Transcript levels of AtMRPs: induction of AtMRP3 after cadmium treatments. Plant Cell Environ. 26: 371–381.Google Scholar
  5. Caldwell, M.M. 1971. Solar ultraviolet radiation and the growth and development of higher plants. In: A.C. Giese (Ed.), Photophysiology, Vol. 6. Academic Press, New York, pp. 131–177.Google Scholar
  6. Chang, S., Puryear, J. and Cairney, J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113–116.Google Scholar
  7. Chapple, C. 1998. Molecular genetics analysis of plant cytochrome P450-dependent monooxygenases. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49: 311–343.Google Scholar
  8. Cheong, Y.H., Chang, H.-S., Gupta, R., Wang, X., Zhu, T. and Luan, S. 2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129: 661–677.PubMedGoogle Scholar
  9. Coleman, J.O.D., Blake-Klaff, M.M.A. and Davies, T.G.E. 1997. Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci. 2: 144–151.Google Scholar
  10. Davies, T.G.E. and Coleman, J.O.D. 2000. The Arabidopsis thaliana ATP-binding cassette proteins: an emerging superfamily. Plant Cell Environ. 23: 431–443.Google Scholar
  11. Dixon, D.P., Cole, D.J. and Edwards, R. 2000. Characterisation of a zeta class glutathione transferase from Arabidopsis thaliana with a putative role in tyrosine catabolism. Arch. Biochem. Biophys. 384: 407–412.PubMedGoogle Scholar
  12. Dixon, D.P., Lapthorn, A. and Edwards, R. 2002. Plant glutathione transferases. Genome Biol. 3: 3004.1–3004.10.Google Scholar
  13. Dong, X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1: 316–323.PubMedGoogle Scholar
  14. Edwards, R. and Dixon, D.P. 2000. The role of glutathione transferases in herbicide metabolism. In: A.H. Cobb and R.C. Kirkwood (Eds.), Herbicides and their Mechanism of Action. Sheffield Academic Press, Sheffield, pp. 33–71.Google Scholar
  15. Edwards, R., Dixon, D.P. and Walbot, V. 2000. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5: 193–198.PubMedGoogle Scholar
  16. Gaedeke, N., Klein, M., Kolukisaoglu, Ñ., Forestier, C., Müller, A., Ansorge, M., Becker, D., Mamnun, Y., Kuchler, K., Schulz, B., Müller-Röber, B. and Martinoia, E. 2001. The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J. 20: 1875–1887.PubMedGoogle Scholar
  17. Gibeaut, D.M., Hulett, J., Cramer, G.R. and Seemann, J.R. 1997. Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions. Plant Physiol. 115: 317–319.PubMedGoogle Scholar
  18. Godiard, L., Sauviac, L., Dalbin, N., Liaubet, L., Callard, D., Czernic, P. and Marco, Y. 1998. CYP76C2, an Arabidopsis thaliana cytochrome P450 gene expressed during hypersensitive and developmental cell death. FEBS Lett. 438: 245–249.PubMedGoogle Scholar
  19. Gonneau, M., Mornet, R. and Laloue, M. 1998. A Nicotiana plumbaginifolia protein labeled with an azido cytokinin agonist is a glutathione S-transferase. Physiol. Plant 103: 114–124.Google Scholar
  20. Graham, S.E. and Peterson, J.A. 1999. How similar are P450s and what can their differences teach us. Arch. Biochem. Biophys. 369: 24–29.PubMedGoogle Scholar
  21. Hauser, N.C., Vingron, M., Scheideler, M., Krems, B., Hellmuth, K., Entian, K.-D. and Hoheisel, J.D. 1998. Transcriptional profiling on all open reading frames of Saccharomyces cerevisiae. Yeast 14: 1209–1221.PubMedGoogle Scholar
  22. Holter, N.S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J.R. and Fedoroff, N.V. 2000. Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc. Natl. Acad. Sci. USA 97: 8409–8414.PubMedGoogle Scholar
  23. Ibdah, M., Krins, A., Seidlitz, H.K., Heller, W., Strack, D. and Vogt, T. 2002. Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation. Plant Cell Environ. 25: 1145–1154.Google Scholar
  24. Jackson, R.G., Kowalczyk, M., Li, Y., Higgins, G., Ross, J., Sandberg, G. and Bowles, D.J. 2002. Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines. Plant J. 32: 573–583.PubMedGoogle Scholar
  25. Jackson, R.G., Lim, E.-K., Li, Y., Kowalczyk, M., Sandberg, G., Hoggett, J., Ashford, D.A. and Bowles, D.J. 2001. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J. Biol. Chem. 276: 4350–4356.PubMedGoogle Scholar
  26. Jasinski, M., Stukkens, Y., Degand, H., Purnelle, B., Marchand-Brynaert, J. and Boutry, M. 2001. A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13: 1095–1107.PubMedGoogle Scholar
  27. Jin, H., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B. and Martin, C. 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J. 19: 6150–6161.PubMedGoogle Scholar
  28. Jones, P. and Vogt, T. 2001. Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213: 164–174.PubMedGoogle Scholar
  29. Jones, P.R., Messner, B., Nakajima, J.-J., Schäffner, A.R. and Saito, K. 2003. UGT73C6 and UGT78D1-glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J. Biol. Chem. 278: 43910–43918.PubMedGoogle Scholar
  30. Kahn, R. and Durst, F. 2000. Function and evolution of plant cytochrome P450. Recent Adv. Phytochem. 34: 151–189.Google Scholar
  31. Kampranis, S.C., Damianova, R., Atallah, M., Toby, G., Kondi, G., Tsichlis, P.N. and Makris, A.M. 2000. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J. Biol. Chem. 275: 29207–29216.PubMedGoogle Scholar
  32. Kolukisaoglu, Ñ., Bovet, L., Klein, M., Eggmann, T., Geisler, M., Wanke, D., Martinoia, E. and Schulz, B. 2002. Family business: The multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana. Planta 216: 107–119.PubMedGoogle Scholar
  33. Kreuz, K. and Martinoia, E. 1999. Herbicide metabolism in plants: Integrated pathways of detoxification. In: G.T. Brooks and T.R. Roberts (Eds.), The Proceedings of the 9th International Congress on Pesticide Chemistry: The Food-Environment Challenge. The Royal Society of Chemistry, London, pp. 279–287.Google Scholar
  34. Kunkel, B.N. and Brooks, D.M. 2002. Cross talk between signalling pathways in pathogen defense. Curr. Opin. Plant Biol. 5: 325–331.PubMedGoogle Scholar
  35. Landgrebe, J., Wurst, W. and Welzl, G. 2002. Permutation-validated principal component analysis of microarray data. Genome Biol. 3: 0019.1–0019.11.Google Scholar
  36. Li, Y., Baldauf, S., Lim, E.-K. and Bowles, D.J. 2001. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J. Biol. Chem. 276, 4338–4343.PubMedGoogle Scholar
  37. Lim, E., Doucet, C.J., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Ross, J. and Bowles, D.J. 2002. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J. Biol. Chem. 277: 586–592.PubMedGoogle Scholar
  38. Lim, E.-K., Li, Y., Parr, A., Jackson, R., Ashford, D.A. and Bowles, D.J. 2001. Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J. Biol. Chem. 276: 4344–4349.PubMedGoogle Scholar
  39. Loutre, C., Dixon, D.P., Brazier, M., Slater, M., Cole, D.J. and Edwards, R. 2003. Isolation of a glucosyltransferase from Arabidopsis thaliana active in the metabolism of the persistent pollutant 3,4-dichloroaniline. Plant J. 34: 485–493.PubMedGoogle Scholar
  40. Loyall, L., Uchida, K., Braun, S., Furuya, M. and Frohnmeyer, H. 2000. Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures. Plant Cell 12: 1939–1950.PubMedGoogle Scholar
  41. Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L. and Dietrich, R.A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26: 403–410.PubMedGoogle Scholar
  42. Mansuy, D. 1998. The great diversity of reactions catalyzed by cytochrome P450. Comp. Biochem. Physiol. Part. C. 121: 5–14.Google Scholar
  43. Marrs, K.A. 1996. The functions and regulation of glutathione S-transferases in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47: 127–158.Google Scholar
  44. Martinoia, E., Klein, M., Geisler, M., Bovet, L., Forestier, C., Kolukisaoglu, Ñ., Müller-Röber, B. and Schulz, B. 2002. Multifunctionality of plant ABC transporters – more than just detoxifiers. Planta 214: 345–355.PubMedGoogle Scholar
  45. Mazel, A. and Levine, A. 2002. Induction of glucosyltransferase transcription and activity during superoxide-dependent cell death in Arabidopsis plants. Plant Physiol. Biochem. 40: 133–140.Google Scholar
  46. Messner, B., Thulke, O. and Schäffner, A.R. 2003. Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta 217: 138–146.PubMedGoogle Scholar
  47. Mikkelsen,M.D., Petersen, B.L., Glawischnig, E., Jensen, A.B., Andreasson, E. and Halkier, B.A. 2003. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol. 131: 298–308.PubMedGoogle Scholar
  48. Milkowski, C., Baumert, A. and Strack, D. 2000. Identification of four Arabidopsis genes encoding hydroxycinnamate glucosyltransferases. FEBS Lett. 486: 183–184.PubMedGoogle Scholar
  49. Mizutani, M., Ohta, D. and Sato, R. 1997. Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiol. 113: 755–763.PubMedGoogle Scholar
  50. Mizutani, M., Ward, E. and Ohta, D. 1998. Cytochrome P450 superfamily in Arabidopsis thaliana: Isolation of cDNAs, differential expression, and RFLP mapping of multiple cytochromes P450. Plant Mol. Biol. 37: 39–52.PubMedGoogle Scholar
  51. Mullineaux, P.M., Karpinski, S., Jimenez, A., Cleary, S.P., Robinson, C. and Creissen, G.P. 1998. Identification of cDNAS encoding plastid-targeted glutathione peroxidase. Plant J. 13: 375–379.PubMedGoogle Scholar
  52. Noctor, G., Gomez, L., Vanacker, H. and Foyer, C.H. 2002. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J. Exp. Bot. 53: 1283–1304.PubMedGoogle Scholar
  53. Page, R.D.M. 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357–358.PubMedGoogle Scholar
  54. Paquette, S. M., Møller, B.L. and Bak, S. 2003. On the origin of family 1 plant glycosyltransferases. Phytochemistry 62: 399–413.PubMedGoogle Scholar
  55. Parmigiani, G., Garrett, E.S., Irizarry, R.A. and Zeger, S.L. 2003. The Analysis of Gene Expression Data: Methods and Software. Springer, New York.Google Scholar
  56. Penninckx, I.A.M.A., Thomma, B.P.H.J., Buchala, A., Métraux, J.-P. and Broekaert, W.F. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10: 2103–2113.PubMedGoogle Scholar
  57. Pichersky, E. and Gang, D.R. 2000. Genetics and biochemistry of secondary metabolites in plants: An evolutionary perspective. Trends Plant Sci. 5: 439–445.PubMedGoogle Scholar
  58. Raychaudhuri, S., Stuart, J. and Altman, R. 2000. Principal component analysis to summarize microarray experiments: application to sporulation time series. In: Pacific Symposium on Biocomputing, Vol. 5, pp. 455–466.Google Scholar
  59. Reymond, P., Weber, H., Damond, M. and Farmer, E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12: 707–720.PubMedGoogle Scholar
  60. Rodriguez Milla, M.A., Maurer, A., Rodriguez Huete, A. and Gustafson, J.P. 2003. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J. 36: 602–615.PubMedGoogle Scholar
  61. Ross, J., Li, Y., Lim, E. and Bowles, D.J. 2001. Protein family review. Higher plant glycosyltransferases. Genome Biol. 2: 3004.1–3004.6.Google Scholar
  62. Sánchez-Fernández, R., Davies, T.G.E., Coleman, J.O.D. and Rea, P.A. 2001. The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J. Biol. Chem. 276: 30231–30244.PubMedGoogle Scholar
  63. Sandermann, H. Jr. 1994. Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4: 225–241.PubMedGoogle Scholar
  64. Sasabe, M., Toyoda, K., Shiraishi, T., Inagaki, Y., Ichinose, Y. 2002. cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor-responsive gene. FEBS Lett. 518: 164–168.PubMedGoogle Scholar
  65. Schalk, M., Pierrel, M.A., Zimmerlin, A., Batard, Y., Durst, F. and Werck-Reichhart, D. 1997. Xenobiotics: substrates and inhibitors of the plant P450s. Environ. Sci. Pol. Res. 4: 229–234.Google Scholar
  66. Schaller, B., Schneider, B. and Schütte, R.H. 1992. Metabolism of the herbicide bromoxynil in Hordeum vulgare and Stellaria media. Z. Naturforsch. 47c: 126–131.Google Scholar
  67. Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C. and Manners, J.M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97: 11655–11660.PubMedGoogle Scholar
  68. Schoch, G.A., Nikov, G.N., Alworth, W.L. and Werck-Reichhart, D. 2002. Chemical inactivation of the cinnamate 4-hydroxylase allows for the accumulation of salicylic acid in elicited cells. Plant Physiol. 130: 1022–1031.PubMedGoogle Scholar
  69. Schuler, M.A. and Werck-Reichhart, D. 2003. Functional genomics of P450s. Ann. Rev. Plant Phys. Plant Mol. Biol. 54: 629–667.Google Scholar
  70. Smart, C.C. and Fleming, A.J. 1996. Hormonal and environmental regulation of a plant PDR5-like ABC transporter. J. Biol. Chem. 271: 19351–19357.PubMedGoogle Scholar
  71. Smith, A.P., Nourizadeh, S.D., Peer, W.A., Xu, J., Bandyopadhyay, A., Murphy, A.S. and Goldsbrough, P.B. 2003. Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids. Plant J. 36: 433–442.PubMedGoogle Scholar
  72. Sugimoto, M. and Sakamoto, W. 1997. Putative phospholipid hydroperoxide glutathione peroxidase gene from Arabidopsis thaliana induced by oxidative stress. Genes Genet. Syst. 72: 311–316.PubMedGoogle Scholar
  73. Surplus, S.L., Jordan, B.R., Murphy, A.M., Carr, J.P., Thomas, B. and A.-H.-Mackerness, S. 1998. Ultraviolet-Binduced responses in Arabidopsis thaliana: Role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant Cell Environ. 21: 685–694.Google Scholar
  74. Thara, V.K., Tang, X., Gu, Y.Q., Martin, G.B. and Zhou, J.M. 1999. Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate and jasmonate. Plant J. 20: 475–483.PubMedGoogle Scholar
  75. Thimm, O., Essigmann, B., Kloska, S., Altmann, T. and Buckhout, T.J. 2001. Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol. 127: 1030–1043.PubMedGoogle Scholar
  76. Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.PubMedGoogle Scholar
  77. Thornalley, P.J. 1990. The glyoxalase system: New developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J. 269: 1–11.PubMedGoogle Scholar
  78. Tommasini, R., Vogt, E., Schmid, J., Fromentau, M., Amrhein, N. and Martinoia, E. 1997. Differential expression of genes coding for ABC transporters after treatment of Arabidopsis thaliana with xenobiotics. FEBS Lett. 411: 206–210.PubMedGoogle Scholar
  79. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D. and Altman, R.B. 2001. Missing value estimation methods for DNA microarrays. Bioinformatics 17: 520–525.PubMedGoogle Scholar
  80. van den Brûle, S. and Smart, C.C. 2002. The plant PDR family of ABC transporters. Planta 216: 95–106.PubMedGoogle Scholar
  81. van den Brûle, S., Müller, A., Fleming, A.J. and Smart, C.C. 2002. The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol. Plant J. 30: 649–662.PubMedGoogle Scholar
  82. Wagner, U., Edwards, R., Dixon, D.P. and Mauch, F. 2002. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol. Biol. 49: 515–532.PubMedGoogle Scholar
  83. Warnecke, D.C., Baltrusch, M., Buck, F., Wolter, F.P. and Heinz, E. 1997. UDP-glucose:sterol glucosyltransferase: cloning and functional expression in Escherichia coli. Plant Mol. Biol. 35: 597–603.PubMedGoogle Scholar
  84. Weig, A., Deswarte, C. and Chrispeels, M.J. 1997. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol. 114: 1347–1357.PubMedGoogle Scholar
  85. Werck-Reichhart, D., Bak, S. and Paquette, S. 2002. Cytochromes P450. In: C.R. Somerville and E.M. Meyerowitz (Eds.), The Arabidopsis Book, American Society of Plant Biologists, Rockville, MD, http://www.aspb.org/publications/ arabidopsis/.Google Scholar
  86. Xu, W., Bak, S., Decker, A., Paquette, S.M., Feyereisen, R. and Galbraith, D.W. 2001. Microarray-based analysis of gene expression in very large gene families: the cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene 272: 61–74.PubMedGoogle Scholar
  87. Xu, Y., Chang, P.F.L., Liu, D., Narasimhan, M. L., Raghothama, K. G., Hasegawa, P.M. and Bressan, R.A. 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6: 1077–1085.PubMedGoogle Scholar
  88. Zhou, N., Tootle, T.L. and Glazebrook, J. 1999. Arabidopsis PAD3, a gene required for camalexin biosynthesis encodes a putative cytochrome P450 monooxygenase. Plant Cell 11: 2419–2428.PubMedGoogle Scholar
  89. Zimmerli, L., Jakab, G., Metraux, J.-P. and Mauch-Mani, B. 2000. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97: 12920–12925.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Sabine Glombitza
    • 1
  • Pierre-henri Dubuis
    • 2
  • Oliver Thulke
    • 1
  • Gerhard Welzl
    • 1
  • Lucien Bovet
    • 2
    • 3
  • Michael Götz
    • 1
  • Matthias Affenzeller
    • 1
  • Birgit Geist
    • 1
  • Alain Hehn
    • 4
  • Carole Asnaghi
    • 5
  • Dieter Ernst
    • 1
  • Harald Seidlitz
    • 1
  • Heidrun Gundlach
    • 1
  • Klaus Mayer
    • 1
  • Enrico Martinoia
    • 5
  • Daniele Werck-reichhart
    • 4
  • Felix Mauch
    • 2
  • Anton Schäffner
    • 1
  1. 1.Department of Environmental EngineeringInstitute of Biochemical Plant Pathology, Institute of Developmental Genetics, Institute of Bioinformatics, MIPS, and Institute of Soil Ecology GSF – National Research Center for Environment and HealthNeuherbergGermany
  2. 2.Department of BiologyUniversity of FribourgFribourgSwitzerland
  3. 3.Institute of Plant SciencesUniversity of BernBernSwitzerland
  4. 4.Department of Plant Stress ResponseInstitute of Plant Molecular Biology, Université Louis PasteurStrasbourg CedexFrance
  5. 5.Plant Biology – Molecular Plant PhysiologyUniversity of ZurichSwitzerland

Personalised recommendations