Pituitary

, Volume 21, Issue 2, pp 183–193 | Cite as

Silent corticotroph adenomas

Article

Abstract

Purpose

Silent corticotroph adenomas (SCAs) present clinically as non-functioning adenomas (NFAs) but are immunopositive for adrenocorticotrophic hormone (ACTH) without biochemical and clinical manifestation of hypercortisolism. Pathologic examination of resected NFAs that demonstrate positive ACTH and/or TPIT expression confirms its corticotroph lineage. SCAs comprise up to 20% of NFAs and exhibit a higher rate of recurrence. Studies of molecular mechanisms have generated multiple hypotheses on SCA tumorigenesis, pathophysiology, and growth that as yet remain to be proven. An improved understanding of their pathologic and clinical characteristics is needed.

Methods

A literature review was performed using PubMed to identify research reports and clinical case series on SCAs.

Results

Up to date findings regarding epidemiology, mechanisms of pathogenesis, differentiation, progression, and growth, as well as clinical presentation, postoperative course, and treatment options for patients with SCAs are presented. Pooled results demonstrate that 25–40% of cases show cavernous sinus invasion, preoperative hypopituitarism, new-onset hypopituitarism, and recurrence.

Conclusion

This article reviews the incidence, molecular pathology, and clinical behavior of these unique non-functioning pituitary corticotroph adenomas, and highlights the need for rigorous monitoring for recurrences and hypopituitarism in patients with SCAs.

Keywords

Silent corticotroph Cushing Pituitary adenoma Nonfunctioning 

Notes

Acknowledgements

We thank Ms. Shira Berman for assistance with manuscript preparation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Saeger W, Ludecke DK, Buchfelder M, Fahlbusch R, Quabbe HJ, Petersenn S (2007) Pathohistological classification of pituitary tumors: 10 years of experience with the German Pituitary Tumor Registry. Eur J Endocrinol 156(2):203–216.  https://doi.org/10.1530/eje.1.02326 CrossRefPubMedGoogle Scholar
  2. 2.
    Guttenberg KB, Mayson SE, Sawan C, Kharlip J, Lee JY, Martinez-Lage M, Loevner LA, Ewanichak J, Grady MS, Snyder PJ (2016) Prevalence of clinically silent corticotroph macroadenomas. Clin Endocrinol 85(6):874–880.  https://doi.org/10.1111/cen.13146 CrossRefGoogle Scholar
  3. 3.
    Pawlikowski M, Kunert-Radek J, Radek M (2008) “Silent” corticotropinoma. Neuro Endocrinol Lett 29(3):347–350 pii]PubMedGoogle Scholar
  4. 4.
    Jahangiri A, Wagner JR, Pekmezci M, Hiniker A, Chang EF, Kunwar S, Blevins L, Aghi MK (2013) A comprehensive long-term retrospective analysis of silent corticotrophic adenomas vs hormone-negative adenomas. Neurosurgery 73(1):8–17.  https://doi.org/10.1227/01.neu.0000429858.96652.1e (discussion 17–18)CrossRefPubMedGoogle Scholar
  5. 5.
    Raverot G, Wierinckx A, Jouanneau E, Auger C, Borson-Chazot F, Lachuer J, Pugeat M, Trouillas J (2010) Clinical, hormonal and molecular characterization of pituitary ACTH adenomas without (silent corticotroph adenomas) and with Cushing’s disease. Eur J Endocrinol 163(1):35–43.  https://doi.org/10.1530/EJE-10-0076 CrossRefPubMedGoogle Scholar
  6. 6.
    Cho HY, Cho SW, Kim SW, Shin CS, Park KS, Kim SY (2010) Silent corticotroph adenomas have unique recurrence characteristics compared with other nonfunctioning pituitary adenomas. Clin Endocrinol 72(5):648–653.  https://doi.org/10.1111/j.1365-2265.2009.03673.x CrossRefGoogle Scholar
  7. 7.
    Horvath E, Kovacs K, Killinger DW, Smyth HS, Platts ME, Singer W (1980) Silent corticotropic adenomas of the human pituitary gland: a histologic, immunocytologic, and ultrastructural study. Am J Pathol 98(3):617–638PubMedPubMedCentralGoogle Scholar
  8. 8.
    Baldeweg SE, Pollock JR, Powell M, Ahlquist J (2005) A spectrum of behaviour in silent corticotroph pituitary adenomas. Br J Neurosurg 19(1):38–42.  https://doi.org/10.1080/02688690500081230 CrossRefPubMedGoogle Scholar
  9. 9.
    Yamada S, Ohyama K, Taguchi M, Takeshita A, Morita K, Takano K, Sano T (2007) A study of the correlation between morphological findings and biological activities in clinically nonfunctioning pituitary adenomas. Neurosurgery 61(3):580–584.  https://doi.org/10.1227/01.NEU.0000290906.53685.79 (discussion 584-585)CrossRefPubMedGoogle Scholar
  10. 10.
    Zoli M, Faustini-Fustini M, Mazzatenta D, Marucci G, De Carlo E, Bacci A, Pasquini E, Lanzino G, Frank G (2015) ACTH adenomas transforming their clinical expression: report of 5 cases. Neurosurg Focus 38(2):E15.  https://doi.org/10.3171/2014.11.FOCUS14679 CrossRefGoogle Scholar
  11. 11.
    Langlois F, Lim DST, Yedinak CG, Cetas I, McCartney S, Cetas J, Dogan A, Fleseriu M (2017) Predictors of silent corticotroph adenoma recurrence; a large retrospective single center study and systematic literature review. Pituitary.  https://doi.org/10.1007/s11102-017-0844-4 Google Scholar
  12. 12.
    Nishioka H, Inoshita N, Mete O, Asa SL, Hayashi K, Takeshita A, Fukuhara N, Yamaguchi-Okada M, Takeuchi Y, Yamada S (2015) The complementary role of transcription factors in the accurate diagnosis of clinically nonfunctioning pituitary adenomas. Endocr Pathol 26(4):349–355.  https://doi.org/10.1007/s12022-015-9398-z CrossRefPubMedGoogle Scholar
  13. 13.
    Mete O, Lopes MB (2017) Overview of the 2017 WHO Classification of Pituitary Tumors. Endocr Pathol.  https://doi.org/10.1007/s12022-017-9498-z Google Scholar
  14. 14.
    Vallette-Kasic S, Figarella-Branger D, Grino M, Pulichino AM, Dufour H, Grisoli F, Enjalbert A, Drouin J, Brue T (2003) Differential regulation of proopiomelanocortin and pituitary-restricted transcription factor (TPIT), a new marker of normal and adenomatous human corticotrophs. J Clin Endocrinol Metab 88(7):3050–3056.  https://doi.org/10.1210/jc.2002-021934 CrossRefPubMedGoogle Scholar
  15. 15.
    Tateno T, Izumiyama H, Doi M, Yoshimoto T, Shichiri M, Inoshita N, Oyama K, Yamada S, Hirata Y (2007) Differential gene expression in ACTH -secreting and non-functioning pituitary tumors. Eur J Endocrinol 157(6):717–724.  https://doi.org/10.1530/EJE-07-0428 CrossRefPubMedGoogle Scholar
  16. 16.
    Gibson S, Ray DW, Crosby SR, Dornan TL, Jennings AM, Bevan JS, Davis JR, White A (1996) Impaired processing of proopiomelanocortin in corticotroph macroadenomas. J Clin Endocrinol Metab 81(2):497–502.  https://doi.org/10.1210/jcem.81.2.8636257 PubMedGoogle Scholar
  17. 17.
    Horvath E, Kovacs K, Lloyd RV (1999) Pars intermedia of the human pituitary revisited: morphologic aspects and frequency of hyperplasia of POMC-peptide immunoreactive cells. Endocr Pathol 10:55–64CrossRefGoogle Scholar
  18. 18.
    Thodou E, Argyrakos T, Kontogeorgos G (2007) Galectin-3 as a marker distinguishing functioning from silent corticotroph adenomas. Hormones 6(3):227–232PubMedGoogle Scholar
  19. 19.
    Stefaneanu L, Kovacs K, Horvath E, Lloyd RV (1991) In situ hybridization study of pro-opiomelanocortin (POMC) gene expression in human pituitary corticotrophs and their adenomas. Virchows Arch A 419(2):107–113CrossRefGoogle Scholar
  20. 20.
    Kovacs K, Horvath E, Bayley TA, Hassaram ST, Ezrin C (1978) Silent corticotroph cell adenoma with lysosomal accumulation and crinophagy. A distinct clinicopathologic entity. Am J Med 64(3):492–499CrossRefPubMedGoogle Scholar
  21. 21.
    Hosoyama T, Nishijo K, Garcia MM, Schaffer BS, Ohshima-Hosoyama S, Prajapati SI, Davis MD, Grant WF, Scheithauer BW, Marks DL, Rubin BP, Keller C (2010) a postnatal Pax7 progenitor gives rise to pituitary adenomas. Genes Cancer 1(4):388–402.  https://doi.org/10.1177/1947601910370979 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nagaya T, Seo H, Kuwayama A, Sakurai T, Tsukamoto N, Nakane T, Sugita K, Matsui N (1990) Pro-opiomelanocortin gene expression in silent corticotroph-cell adenoma and Cushing’s disease. J Neurosurg 72(2):262–267.  https://doi.org/10.3171/jns.1990.72.2.0262 CrossRefPubMedGoogle Scholar
  23. 23.
    Takumi I, Steiner DF, Sanno N, Teramoto A, Osamura RY (1998) Localization of prohormone convertases 1/3 and 2 in the human pituitary gland and pituitary adenomas: analysis by immunohistochemistry, immunoelectron microscopy, and laser scanning microscopy. Mod Pathol 11(3):232–238PubMedGoogle Scholar
  24. 24.
    Tateno T, Izumiyama H, Doi M, Akashi T, Ohno K, Hirata Y (2007) Defective expression of prohormone convertase 1/3 in silent corticotroph adenoma. Endocr J 54(5):777–782CrossRefPubMedGoogle Scholar
  25. 25.
    Ohta S, Nishizawa S, Oki Y, Yokoyama T, Namba H (2002) Significance of absent prohormone convertase 1/3 in inducing clinically silent corticotroph pituitary adenoma of subtype I–immunohistochemical study. Pituitary 5(4):221–223CrossRefPubMedGoogle Scholar
  26. 26.
    Righi A, Faustini-Fustini M, Morandi L, Monti V, Asioli S, Mazzatenta D, Bacci A, Foschini MP (2017) The changing faces of corticotroph cell adenomas: the role of prohormone convertase 1/3. Endocrine 56(2):286–297.  https://doi.org/10.1007/s12020-016-1028-0 CrossRefPubMedGoogle Scholar
  27. 27.
    Tateno T, Kato M, Tani Y, Oyama K, Yamada S, Hirata Y (2009) Differential expression of somatostatin and dopamine receptor subtype genes in adrenocorticotropin (ACTH)-secreting pituitary tumors and silent corticotroph adenomas. Endocr J 56(4):579–584CrossRefPubMedGoogle Scholar
  28. 28.
    Gabalec F, Beranek M, Netuka D, Masopust V, Nahlovsky J, Cesak T, Marek J, Cap J (2012) Dopamine 2 receptor expression in various pathological types of clinically non-functioning pituitary adenomas. Pituitary 15(2):222–226.  https://doi.org/10.1007/s11102-011-0316-1 CrossRefPubMedGoogle Scholar
  29. 29.
    Tani Y, Inoshita N, Sugiyama T, Kato M, Yamada S, Shichiri M, Hirata Y (2010) Upregulation of CDKN2A and suppression of cyclin D1 gene expressions in ACTH-secreting pituitary adenomas. Eur J Endocrinol 163(4):523–529.  https://doi.org/10.1530/EJE-10-0245 CrossRefPubMedGoogle Scholar
  30. 30.
    Righi A, Jin L, Zhang S, Stilling G, Scheithauer BW, Kovacs K, Lloyd RV (2010) Identification and consequences of galectin-3 expression in pituitary tumors. Mol Cell Endocrinol 326(1–2):8–14.  https://doi.org/10.1016/j.mce.2010.04.026 CrossRefPubMedGoogle Scholar
  31. 31.
    Riss D, Jin L, Qian X, Bayliss J, Scheithauer BW, Young WF Jr, Vidal S, Kovacs K, Raz A, Lloyd RV (2003) Differential expression of galectin-3 in pituitary tumors. Cancer Res 63(9):2251–2255PubMedGoogle Scholar
  32. 32.
    Di Meo A, Rotondo F, Kovacs K, Cusimano MD, Syro LV, Di Ieva A, Diamandis EP, Yousef GM (2015) Human kallikrein 10 expression in surgically removed human pituitary corticotroph adenomas: an immunohistochemical study. Appl Immunohistochem Mol Morphol 23(6):433–437.  https://doi.org/10.1097/PAI.0000000000000108 CrossRefPubMedGoogle Scholar
  33. 33.
    Mete O, Hayhurst C, Alahmadi H, Monsalves E, Gucer H, Gentili F, Ezzat S, Asa SL, Zadeh G (2013) The role of mediators of cell invasiveness, motility, and migration in the pathogenesis of silent corticotroph adenomas. Endocr Pathol 24(4):191–198.  https://doi.org/10.1007/s12022-013-9270-y CrossRefPubMedGoogle Scholar
  34. 34.
    Salehi F, Scheithauer BW, Kovacs K, Horvath E, Syro LV, Sharma S, Manoranjan B, Cusimano M (2012) O-6-methylguanine-DNA methyltransferase (MGMT) immunohistochemical expression in pituitary corticotroph adenomas. Neurosurgery 70(2):491–496.  https://doi.org/10.1227/NEU.0b013e318230ac63 (discussion 496)CrossRefPubMedGoogle Scholar
  35. 35.
    Ma ZY, Song ZJ, Chen JH, Wang YF, Li SQ, Zhou LF, Mao Y, Li YM, Hu RG, Zhang ZY, Ye HY, Shen M, Shou XF, Li ZQ, Peng H, Wang QZ, Zhou DZ, Qin XL, Ji J, Zheng J, Chen H, Wang Y, Geng DY, Tang WJ, Fu CW, Shi ZF, Zhang YC, Ye Z, He WQ, Zhang QL, Tang QS, Xie R, Shen JW, Wen ZJ, Zhou J, Wang T, Huang S, Qiu HJ, Qiao ND, Zhang Y, Pan L, Bao WM, Liu YC, Huang CX, Shi YY, Zhao Y (2015) Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res 25(3):306–317.  https://doi.org/10.1038/cr.2015.20 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Perez-Rivas LG, Theodoropoulou M, Ferrau F, Nusser C, Kawaguchi K, Stratakis CA, Faucz FR, Wildemberg LE, Assie G, Beschorner R, Dimopoulou C, Buchfelder M, Popovic V, Berr CM, Toth M, Ardisasmita AI, Honegger J, Bertherat J, Gadelha MR, Beuschlein F, Stalla G, Komada M, Korbonits M, Reincke M (2015) The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease. J Clin Endocrinol Metab 100(7):E997–E1004.  https://doi.org/10.1210/jc.2015-1453 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A (2006) Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 21(6):737–748.  https://doi.org/10.1016/j.molcel.2006.02.018 CrossRefPubMedGoogle Scholar
  38. 38.
    Alwan HA, van Leeuwen JE (2007) UBPY-mediated epidermal growth factor receptor (EGFR) de-ubiquitination promotes EGFR degradation. J Biol Chem 282(3):1658–1669.  https://doi.org/10.1074/jbc.M604711200 CrossRefPubMedGoogle Scholar
  39. 39.
    Ben-Shlomo A, Cooper O (2017) Role of tyrosine kinase inhibitors in the treatment of pituitary tumours: from bench to bedside. Curr Opin Endocrinol Diabetes Obes 24(4):301–305.  https://doi.org/10.1097/MED.0000000000000344 CrossRefPubMedGoogle Scholar
  40. 40.
    Manoranjan B, Salehi F, Scheithauer BW, Rotondo F, Kovacs K, Cusimano MD (2010) Estrogen receptors alpha and beta immunohistochemical expression: clinicopathological correlations in pituitary adenomas. Anticancer Res 30(7):2897–2904PubMedGoogle Scholar
  41. 41.
    Scheithauer BW, Kovacs K, Horvath E, Young WF Jr, Lloyd RV (2005) The pituitary in Turner syndrome. Endocr Pathol 16(3):195–200CrossRefPubMedGoogle Scholar
  42. 42.
    Cooper O, Ben-Shlomo A, Bonert V, Bannykh S, Mirocha J, Melmed S (2010) Silent corticogonadotroph adenomas: clinical and cellular characteristics and long-term outcomes. Horm Cancer 1(2):80–92.  https://doi.org/10.1007/s12672-010-0014-x CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ioachimescu AG, Eiland L, Chhabra VS, Mastrogianakis GM, Schniederjan MJ, Brat D, Pileggi AV, Oyesiku NM (2012) Silent corticotroph adenomas: Emory University cohort and comparison with ACTH-negative nonfunctioning pituitary adenomas. Neurosurgery 71(2):296–303.  https://doi.org/10.1227/NEU.0b013e318257c1f0 (discussion 304)CrossRefPubMedGoogle Scholar
  44. 44.
    Scheithauer BW, Jaap AJ, Horvath E, Kovacs K, Lloyd RV, Meyer FB, Laws ER Jr, Young WF Jr (2000) Clinically silent corticotroph tumors of the pituitary gland. Neurosurgery 47(3):723–729 (discussion 729-730)PubMedGoogle Scholar
  45. 45.
    Webb KM, Laurent JJ, Okonkwo DO, Lopes MB, Vance ML, Laws ER Jr (2003) Clinical characteristics of silent corticotrophic adenomas and creation of an internet-accessible database to facilitate their multi-institutional study. Neurosurgery 53(5), 1076–1084 (discussion 1084-1075)CrossRefPubMedGoogle Scholar
  46. 46.
    Bradley KJ, Wass JA, Turner HE (2003) Non-functioning pituitary adenomas with positive immunoreactivity for ACTH behave more aggressively than ACTH immunonegative tumours but do not recur more frequently. Clin Endocrinol 58(1):59–64CrossRefGoogle Scholar
  47. 47.
    Lopez JA, Kleinschmidt-Demasters Bk B, Sze CI, Woodmansee WW, Lillehei KO (2004) Silent corticotroph adenomas: further clinical and pathological observations. Hum Pathol 35(9):1137–1147CrossRefPubMedGoogle Scholar
  48. 48.
    Alahmadi H, Lee D, Wilson JR, Hayhurst C, Mete O, Gentili F, Asa SL, Zadeh G (2012) Clinical features of silent corticotroph adenomas. Acta Neurochir (Wien) 154(8):1493–1498.  https://doi.org/10.1007/s00701-012-1378-1 CrossRefGoogle Scholar
  49. 49.
    Cohen-Inbar O, Xu Z, Lee CC, Wu CC, Chytka T, Silva D, Sharma M, Radwan H, Grills IS, Nguyen B, Siddiqui Z, Mathieu D, Iorio-Morin C, Wolf A, Cifarelli CP, Cifarelli DT, Lunsford LD, Kondziolka D, Sheehan JP (2017) Prognostic significance of corticotroph staining in radiosurgery for non-functioning pituitary adenomas: a multicenter study. J Neurooncol 135(1):67–74.  https://doi.org/10.1007/s11060-017-2520-y CrossRefPubMedGoogle Scholar
  50. 50.
    Cooper O (2015) Silent corticotroph adenomas. Pituitary 18(2):225–231.  https://doi.org/10.1007/s11102-014-0624-3 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tourniaire J (1991) [The so-called silent corticotropic pituitary adenoma]. Presse Med 20(5):197–198PubMedGoogle Scholar
  52. 52.
    Cheres AF, ElAsmar N, Rajpal A, Selman WR, Arafah BM (2017) Perioperative hypothalamic pituitary adrenal function in patients with silent corticotroph adenomas. Pituitary 20(4):471–476.  https://doi.org/10.1007/s11102-017-0809-7 CrossRefPubMedGoogle Scholar
  53. 53.
    Reincke M, Allolio B, Saeger W, Kaulen D, Winkelmann W (1987) A pituitary adenoma secreting high molecular weight adrenocorticotropin without evidence of Cushing’s disease. J Clin Endocrinol Metab 65(6):1296–1300.  https://doi.org/10.1210/jcem-65-6-1296 CrossRefPubMedGoogle Scholar
  54. 54.
    Oliver RL, Davis JR, White A (2003) Characterisation of ACTH related peptides in ectopic Cushing’s syndrome. Pituitary 6(3):119–126CrossRefPubMedGoogle Scholar
  55. 55.
    Chen L, White WL, Spetzler RF, Xu B (2011) A prospective study of nonfunctioning pituitary adenomas: presentation, management, and clinical outcome. J Neurooncol 102(1):129–138.  https://doi.org/10.1007/s11060-010-0302-x CrossRefPubMedGoogle Scholar
  56. 56.
    van Varsseveld NC, van Bunderen CC, Franken AA, Koppeschaar HP, van der Lely AJ, Drent ML (2015) Tumor recurrence or regrowth in adults with nonfunctioning pituitary adenomas using GH replacement therapy. J Clin Endocrinol Metab 100(8):3132–3139.  https://doi.org/10.1210/jc.2015-1764 CrossRefPubMedGoogle Scholar
  57. 57.
    O’Reilly MW, Reulen RC, Gupta S, Thompson CA, Dineen R, Goulden EL, Bugg G, Pearce H, Toogood AA, Gittoes NJ, Mitchell R, Thompson CJ, Ayuk J (2016) ACTH and gonadotropin deficiencies predict mortality in patients treated for nonfunctioning pituitary adenoma: long-term follow-up of 519 patients in two large European centres. Clin Endocrinol 85(5):748–756.  https://doi.org/10.1111/cen.13141 CrossRefGoogle Scholar
  58. 58.
    Olsson DS, Nilsson AG, Bryngelsson IL, Trimpou P, Johannsson G, Andersson E (2015) Excess mortality in women and young adults with nonfunctioning pituitary adenoma: a Swedish nationwide study. J Clin Endocrinol Metab 100(7):2651–2658.  https://doi.org/10.1210/jc.2015-1475 CrossRefPubMedGoogle Scholar
  59. 59.
    Ntali G, Capatina C, Fazal-Sanderson V, Byrne JV, Cudlip S, Grossman AB, Wass JA, Karavitaki N (2016) Mortality in patients with non-functioning pituitary adenoma is increased: systematic analysis of 546 cases with long follow-up. Eur J Endocrinol 174(2):137–145.  https://doi.org/10.1530/EJE-15-0967 CrossRefPubMedGoogle Scholar
  60. 60.
    Yokoyama S, Kawahara Y, Sano T, Nakayama M, Kitajima S-i, Kuratsu J-i (2001) A case of non-functioning pituitary adenoma with Cushing’s syndrome upon recurrence. Neuropathology 21(4):288–293CrossRefPubMedGoogle Scholar
  61. 61.
    Vaughan NJ, Laroche CM, Goodman I, Davies MJ, Jenkins JS (1985) Pituitary Cushing’s disease arising from a previously non-functional corticotrophic chromophobe adenoma. Clin Endocrinol 22(2):147–153CrossRefGoogle Scholar
  62. 62.
    Ambrosi B, Colombo P, Bochicchio D, Bassetti M, Masini B, Faglia G (1992) The silent corticotropinoma: is clinical diagnosis possible? J Endocrinol Invest 15(6):443–452CrossRefPubMedGoogle Scholar
  63. 63.
    Gogel EL, Salber PR, Tyrrell JB, Rosenblum ML, Findling JW (1983) Cushing’s disease in a patient with a ‘nonfunctioning’ pituitary tumor. Spontaneous development and remission. Arch Intern Med 143(5):1040–1042CrossRefPubMedGoogle Scholar
  64. 64.
    Abucham J, Vieira TC (2005) [Glycoprotein-secreting pituitary adenomas: pathogenesis, diagnosis and treatment]. Arq Bras Endocrinol Metabol 49(5):657–673CrossRefPubMedGoogle Scholar
  65. 65.
    Melcescu E, Gannon AW, Parent AD, Fratkin JF, Nicholas WC, Koch CA, Galhom A (2013) Silent or subclinical corticotroph pituitary macroadenoma transforming into Cushing disease: 11-year follow-up. Neurosurgery 72(1):E144–E146.  https://doi.org/10.1227/NEU.0b013e3182750850 CrossRefPubMedGoogle Scholar
  66. 66.
    Psaras T, Honegger J, Buslei R, Saeger W, Klein D, Capper D, Meyermann R, Mittelbronn M (2007) Atypical type II silent corticotrophic adenoma developing into Cushing’s disease upon second recurrence. Exp Clin Endocrinol Diabetes 115(9):610–615.  https://doi.org/10.1055/s-2007-984437 CrossRefPubMedGoogle Scholar
  67. 67.
    Annamalai AK, Dean AF, Kandasamy N, Kovacs K, Burton H, Halsall DJ, Shaw AS, Antoun NM, Cheow HK, Kirollos RW, Pickard JD, Simpson HL, Jefferies SJ, Burnet NG, Gurnell M (2012) Temozolomide responsiveness in aggressive corticotroph tumours: a case report and review of the literature. Pituitary 15(3):276–287.  https://doi.org/10.1007/s11102-011-0363-7 CrossRefPubMedGoogle Scholar
  68. 68.
    He L, Forbes JA, Carr K, Highfield NH, Utz A, Moots P, Weaver K (2016) Response of silent corticotroph pituitary carcinoma to chemotherapy: case report. J Neurosurg Sci 60(2):272–280PubMedGoogle Scholar
  69. 69.
    Moshkin O, Syro LV, Scheithauer BW, Ortiz LD, Fadul CE, Uribe H, Gonzalez R, Cusimano M, Horvath E, Rotondo F, Kovacs K (2011) Aggressive silent corticotroph adenoma progressing to pituitary carcinoma: the role of temozolomide therapy. Hormones 10(2):162–167CrossRefPubMedGoogle Scholar
  70. 70.
    Roncaroli F, Scheithauer BW, Young WF, Horvath E, Kovacs K, Kros JM, Al-Sarraj S, Lloyd RV, Faustini-Fustini M (2003) Silent corticotroph carcinoma of the adenohypophysis: a report of five cases. Am J Surg Pathol 27(4):477–486CrossRefPubMedGoogle Scholar
  71. 71.
    Farrell WE, Coll AP, Clayton RN, Harris PE (2003) Corticotroph carcinoma presenting as a silent corticotroph adenoma. Pituitary 6(1):41–47CrossRefPubMedGoogle Scholar
  72. 72.
    Ortiz LD, Syro LV, Scheithauer BW, Ersen A, Uribe H, Fadul CE, Rotondo F, Horvath E, Kovacs K (2012) Anti-VEGF therapy in pituitary carcinoma. Pituitary 15(3):445–449.  https://doi.org/10.1007/s11102-011-0346-8 CrossRefPubMedGoogle Scholar
  73. 73.
    Xu Z, Ellis S, Lee CC, Starke RM, Schlesinger D, Lee Vance M, Lopes MB, Sheehan J (2014) Silent corticotroph adenomas after stereotactic radiosurgery: a case-control study. Int J Radiat Oncol Biol Phys 90(4):903–910.  https://doi.org/10.1016/j.ijrobp.2014.07.013 CrossRefPubMedGoogle Scholar
  74. 74.
    Ceccato F, Lombardi G, Manara R, Emanuelli E, Denaro L, Milanese L, Gardiman MP, Bertorelle R, Scanarini M, D’Avella D, Occhi G, Boscaro M, Zagonel V, Scaroni C (2015) Temozolomide and pasireotide treatment for aggressive pituitary adenoma: expertise at a tertiary care center. J Neurooncol 122(1):189–196.  https://doi.org/10.1007/s11060-014-1702-0 CrossRefPubMedGoogle Scholar
  75. 75.
    Andersen M, Hagen C, Frystyk J, Schroeder HD (2003) Development of acromegaly in patients with prolactinomas. Eur J Endocrinol 149(1):17–22CrossRefPubMedGoogle Scholar
  76. 76.
    Lasolle H, Cortet C, Castinetti F, Cloix L, Caron P, Delemer B, Desailloud R, Jublanc C, Lebrun-Frenay C, Sadoul JL, Taillandier L, Batisse-Lignier M, Bonnet F, Bourcigaux N, Bresson D, Chabre O, Chanson P, Garcia C, Haissaguerre M, Reznik Y, Borot S, Villa C, Vasiljevic A, Gaillard S, Jouanneau E, Assie G, Raverot G (2017) Temozolomide treatment can improve overall survival in aggressive pituitary tumors and pituitary carcinomas. Eur J Endocrinol 176(6):769–777.  https://doi.org/10.1530/EJE-16-0979 CrossRefPubMedGoogle Scholar
  77. 77.
    Arita K, Tominaga A, Sugiyama K, Eguchi K, Iida K, Sumida M, Migita K, Kurisu K (2006) Natural course of incidentally found nonfunctioning pituitary adenoma, with special reference to pituitary apoplexy during follow-up examination. J Neurosurg 104(6):884–891.  https://doi.org/10.3171/jns.2006.104.6.884 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Pituitary Center, Division of Endocrinology, Diabetes and MetabolismCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations