Skip to main content

Advertisement

Log in

A novel variation in the AVP gene resulting in familial neurohypophyseal diabetes insipidus in a large Italian kindred

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Familial neurohypophyseal diabetes insipidus (FNDI) is mostly an autosomal dominant inherited disorder presenting with severe polydipsia and polyuria typically in early childhood. To date, 69 different variations in the AVP gene encoding the AVP prohormone have been identified in autosomal dominant FNDI (adFNDI). In this study we present a family of seven generations, in which a novel variation in the AVP gene seems to cause adFNDI. Clinical assessment by 24 h urine collection, water deprivation test, desmopressin (dDAVP) challenge, and magnetic resonance imaging (MRI) of the posterior pituitary are presented. The diagnosis of adFNDI was confirmed by direct DNA sequence analysis of the AVP gene. Inheritance pattern and clinical history clearly pointed towards adFNDI. Inability of concentrating urine upon dehydration was demonstrated by a water deprivation test, and neurohypophyseal diabetes insipidus was strongly suspected after dDAVP administration, during which renal concentration ability quadrupled. MRI revealed a very weak pituitary “bright spot” in each of six subjects and a further reduction in the size of the neurohypophysis in a 7-year follow-up MRI scan in one subject. DNA sequence analysis revealed heterozygousity for a novel g.1785T > C gene variation predicting a p.Leu63Pro substitution in four affected subjects. Genetic testing in the diagnostic evaluation of families in which diabetes insipidus segregates is highly recommended in that interpretation of clinical assessments can be difficult. Furthermore, presymptomatic diagnosis can ease the parental concern of the carrier status of their offspring, and also avoid unnecessary surveillance of those being unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Christensen JH et al (2004) Differential cellular handling of defective arginine vasopressin (AVP) prohormones in cells expressing mutations of the AVP gene associated with autosomal dominant and recessive familial neurohypophyseal diabetes insipidus. J Clin Endocrinol Metab 89(9):4521–4531

    Article  PubMed  CAS  Google Scholar 

  2. Robertson GL, Shelton RL, Athar S (1976) The osmoregulation of vasopressin. Kidney Int 10(1):25–37

    Article  PubMed  CAS  Google Scholar 

  3. Christensen JH, Rittig S (2006) Familial neurohypophyseal diabetes insipidus—an update. Semin Nephrol 26(3):209–223

    Article  PubMed  CAS  Google Scholar 

  4. Christensen JH et al (2004) Impaired trafficking of mutated AVP prohormone in cells expressing rare disease genes causing autosomal dominant familial neurohypophyseal diabetes insipidus. Clin Endocrinol (Oxf) 60(1):125–136

    Article  CAS  Google Scholar 

  5. Siggaard C et al (2005) Expression of three different mutations in the arginine vasopressin gene suggests genotype-phenotype correlation in familial neurohypophyseal diabetes insipidus kindreds. Clin Endocrinol (Oxf) 63(2):207–216

    Article  CAS  Google Scholar 

  6. Olias G, Richter D, Schmale H (1996) Heterologous expression of human vasopressin-neurophysin precursors in a pituitary cell line: defective transport of a mutant protein from patients with familial diabetes insipidus. DNA Cell Biol 15(11):929–935

    Article  PubMed  CAS  Google Scholar 

  7. Nijenhuis M, Zalm R, Burbach JP (1999) Mutations in the vasopressin prohormone involved in diabetes insipidus impair endoplasmic reticulum export but not sorting. J Biol Chem 274(30):21200–21208

    Article  PubMed  CAS  Google Scholar 

  8. Birk J et al (2009) Dominant pro-vasopressin mutants that cause diabetes insipidus form disulfide-linked fibrillar aggregates in the endoplasmic reticulum. J Cell Sci 122(Pt 21):3994–4002

    Article  PubMed  CAS  Google Scholar 

  9. Kubota T et al (2001) Hyperintensity of posterior pituitary on MR T1WI in a boy with central diabetes insipidus caused by missense mutation of neurophysin II gene. Endocr J 48(4):459–463

    Article  PubMed  CAS  Google Scholar 

  10. Miyamoto S, Sasaki N, Tanabe Y (1991) Magnetic resonance imaging in familial central diabetes insipidus. Neuroradiology 33(3):272–273

    Article  PubMed  CAS  Google Scholar 

  11. Mahoney CP et al (2002) Effects of aging on vasopressin production in a kindred with autosomal dominant neurohypophyseal diabetes insipidus due to the DeltaE47 neurophysin mutation. J Clin Endocrinol Metab 87(2):870–876

    Article  PubMed  CAS  Google Scholar 

  12. Braverman LE, Mancini JP, McGoldrick DM (1965) Hereditary idiopathic diabetes insipidus. A case report with autopsy findings. Ann Int Med 63:503–508

    Article  PubMed  CAS  Google Scholar 

  13. Bergeron C et al (1991) Hereditary diabetes insipidus: an immunohistochemical study of the hypothalamus and pituitary gland. Acta Neuropathol 81(3):345–348

    Article  PubMed  CAS  Google Scholar 

  14. Hayashi M et al (2009) Progressive polyuria without vasopressin neuron loss in a mouse model for familial neurohypophysial diabetes insipidus. Am J Physiol Regul Integr Comp Physiol 296(5):R1641–R1649

    Article  PubMed  CAS  Google Scholar 

  15. Si-Hoe SL et al (2000) Endoplasmic reticulum derangement in hypothalamic neurons of rats expressing a familial neurohypophyseal diabetes insipidus mutant vasopressin transgene. FASEB J 14(12):1680–1684

    PubMed  CAS  Google Scholar 

  16. Morishita Y et al (2011) Poly(A) tail length of neurohypophysial hormones is shortened under endoplasmic reticulum stress. Endocrinology 152(12):4846–4855

    Article  PubMed  CAS  Google Scholar 

  17. Rittig S et al (1996) Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am J Hum Genet 58(1):107–117

    PubMed  CAS  Google Scholar 

  18. Baylis PH, Cheetham T (1998) Diabetes insipidus. Arch Dis Child 79(1):84–89

    Article  PubMed  CAS  Google Scholar 

  19. Robertson GL (1995) Diabetes insipidus. Endocrinol Metab Clin North Am 24(3):549–572

    PubMed  CAS  Google Scholar 

  20. Zerbe RL, Robertson GL (1981) A comparison of plasma vasopressin measurements with a standard indirect test in the differential diagnosis of polyuria. N Engl J Med 305(26):1539–1546

    Article  PubMed  CAS  Google Scholar 

  21. Ito M et al (1991) A single base substitution in the coding region for neurophysin II associated with familial central diabetes insipidus. J Clin Invest 87(2):725–728

    Article  PubMed  CAS  Google Scholar 

  22. Bullmann C et al (2002) Identification of a novel mutation in the arginine vasopressin-neurophysin II gene in familial central diabetes insipidus. Exp Clin Endocrinol Diabetes 110(3):134–137

    Article  PubMed  CAS  Google Scholar 

  23. Rittig S et al (2002) Autosomal dominant neurohypophyseal diabetes insipidus due to substitution of histidine for tyrosine(2) in the vasopressin moiety of the hormone precursor. J Clin Endocrinol Metab 87(7):3351–3355

    Article  PubMed  CAS  Google Scholar 

  24. Santiprabhob J, Browning J, Repaske D (2002) A missense mutation encoding Cys73Phe in neurophysin II is associated with autosomal dominant neurohypophyseal diabetes insipidus. Mol Genet Metab 77(1–2):112–118

    Article  PubMed  CAS  Google Scholar 

  25. van den Akker EL et al (2000) Identification of a new mutation (CysII6Gly) in a family with neurogenic diabetes insipidus. Ned Tijdschr Geneeskd 144(20):941–945

    PubMed  Google Scholar 

  26. Kanemitsu N et al (2002) Familial central diabetes insipidus detected by nocturnal enuresis. Pediatr Nephrol 17(12):1063–1065

    Article  PubMed  Google Scholar 

  27. Rutishauser J et al (2002) Clinical and molecular analysis of three families with autosomal dominant neurohypophyseal diabetes insipidus associated with a novel and recurrent mutations in the vasopressin-neurophysin II gene. Eur J Endocrinol 146(5):649–656

    Article  PubMed  CAS  Google Scholar 

  28. Boson WL et al (2003) A signal peptide mutation of the arginine vasopressin gene in monozygotic twins. Clin Endocrinol (Oxf) 58(1):108–110

    Article  CAS  Google Scholar 

  29. Chen LQ et al (1991) Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 A determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom. Proc Natl Acad Sci USA 88(10):4240–4244

    Article  PubMed  CAS  Google Scholar 

  30. Rose JP et al (1996) Crystal structure of the neurophysin-oxytocin complex. Nat Struct Biol 3(2):163–169

    Article  PubMed  CAS  Google Scholar 

  31. Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426(6968):891–894

    Article  PubMed  CAS  Google Scholar 

  32. Lee MC et al (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to the members of the family for their participation. We thank Jane H. Knudsen and Margrethe Kjeldsen for their skilled laboratory assistance. This work was supported by the Novo Nordisk Foundation and the Health Research Fund of Central Denmark Region.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilla Birkegaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birkegaard, C., Christensen, J.H., Falorni, A. et al. A novel variation in the AVP gene resulting in familial neurohypophyseal diabetes insipidus in a large Italian kindred. Pituitary 16, 152–157 (2013). https://doi.org/10.1007/s11102-012-0392-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-012-0392-x

Keywords

Navigation