, Volume 12, Issue 2, pp 136–142 | Cite as

Alterations in body composition in acromegaly



Acromegaly is a condition characterized by growth hormone (GH) and insulin-like growth factor-1 (IGF-1) hypersecretion, and is associated with boney overgrowth, and soft tissue abnormalities due to anabolic, lipolytic, and sodium retaining actions of GH. GH and IGF-1 excess is associated with alterations in body composition, including an increase in body water and lean body mass, and a reduction in body fat. Achievement of biochemical control of the disease results in a reduction in body water and fat-free mass, and an increase in body fat. BMD is generally increased in acromegaly, though the anabolic effect of GH excess on bone is reduced, if not negated, by the presence of hypogonadism, particularly with regard to the trabecular compartment. Further studies are necessary to determine the effect of long-term biochemical control on bone density in subjects with acromegaly.


Growth hormone Insulin-like growth factor-1 Acromegaly Bone mineral density Lean body mass Fat mass 


  1. 1.
    Bengtsson BA, Brummer RJ, Eden S, Bosaeus I (1989) Body composition in acromegaly. Clin Endocrinol (Oxf) 30:121–130 MedlineCrossRefGoogle Scholar
  2. 2.
    Gibney J, Wolthers T, Burt MG, Leung KC, Umpleby AM, Ho KK (2007) Protein metabolism in acromegaly: differential effects of short- and long-term treatment. J Clin Endocrinol Metab 92:1479–1484 Medline. doi: 10.1210/jc.2006-0664 PubMedCrossRefGoogle Scholar
  3. 3.
    O’Sullivan AJ, Kelly JJ, Hoffman DM, Freund J, Ho KK (1994) Body composition and energy expenditure in acromegaly. J Clin Endocrinol Metab 78:381–386 Medline. doi: 10.1210/jc.78.2.381 PubMedCrossRefGoogle Scholar
  4. 4.
    Rau H, Fischer H, Schmidt K, Lembcke B, Althoff PH (1991) Effect of bromocriptine withdrawal in acromegaly on body composition as assessed by bioelectrical impedance analysis. Acta Endocrinol (Copenh) 125:273–279 MedlineGoogle Scholar
  5. 5.
    Moller J (2003) Effects of growth hormone on fluid homeostasis. Clinical and experimental aspects. Growth Horm IGF Res 13:55–74 Medline. doi: 10.1016/S1096-6374(03)00011-X PubMedCrossRefGoogle Scholar
  6. 6.
    Tominaga A, Arita K, Kurisu K, Uozumi T, Migita K, Eguchi KK II, Kawamoto H, Mizoue T (1998) Effects of successful adenomectomy on body composition in acromegaly. Endocr J 45:335–342 Medline. doi: 10.1507/endocrj.45.335 PubMedCrossRefGoogle Scholar
  7. 7.
    Hansen TB, Gram J, Bjerre P, Hagen C, Bollerslev J (1994) Body composition in active acromegaly during treatment with octreotide: a double-blind, placebo-controlled cross-over study. Clin Endocrinol (Oxf) 41:323–329 MedlineCrossRefGoogle Scholar
  8. 8.
    Gevers EF, Loveridge N, Robinson IC (2002) Bone marrow adipocytes: a neglected target tissue for growth hormone. Endocrinology 143:4065–4073 Medline. doi: 10.1210/en.2002-220428 PubMedCrossRefGoogle Scholar
  9. 9.
    Jorgensen JO, Moller L, Krag M, Billestrup N, Christiansen JS (2007) Effects of growth hormone on glucose and fat metabolism in human subjects. Endocrinol Metab Clin North Am 36:75–87 Medline. doi: 10.1016/j.ecl.2006.11.005 PubMedCrossRefGoogle Scholar
  10. 10.
    Sanders EJ, Harvey S (2004) Growth hormone as an early embryonic growth and differentiation factor. Anat Embryol (Berl) 209:1–9 Medline. doi: 10.1007/s00429-004-0422-1 CrossRefGoogle Scholar
  11. 11.
    Brummer RJ, Lonn L, Bengtsson BA, Kvist H, Bosaeus I, Sjostrom L (1996) Comparison of different body composition models in acromegaly. Growth Regul 6:191–200 MedlinePubMedGoogle Scholar
  12. 12.
    Miyakawa M, Tsushima T, Murakami H, Isozaki O, Demura H, Tanaka T (1998) Effect of growth hormone (GH) on serum concentrations of leptin: study in patients with acromegaly and GH deficiency. J Clin Endocrinol Metab 83:3476–3479 Medline. doi: 10.1210/jc.83.10.3476 PubMedCrossRefGoogle Scholar
  13. 13.
    Kaji H, Sugimoto T, Nakaoka D et al (2001) Bone metabolism and body composition in Japanese patients with active acromegaly. Clin Endocrinol (Oxf) 55:175–181 Medline. doi: 10.1046/j.1365-2265.2001.01280.x CrossRefGoogle Scholar
  14. 14.
    Bolanowski M, Milewicz A, Bidzinska B, Jedrzejuk D, Daroszewski J, Mikulski E (2002) Serum leptin levels in acromegaly—a significant role for adipose tissue and fasting insulin/glucose ratio. Med Sci Monit 8:CR685–CR689 MedlinePubMedGoogle Scholar
  15. 15.
    Licinio J, Negrao AB, Mantzoros C et al (1998) Sex differences in circulating human leptin pulse amplitude: clinical implications. J Clin Endocrinol Metab 83:4140–4147 Medline. doi: 10.1210/jc.83.11.4140 PubMedCrossRefGoogle Scholar
  16. 16.
    Lonnqvist F, Wennlund A, Arner P (1997) Relationship between circulating leptin and peripheral fat distribution in obese subjects. Int J Obes Relat Metab Disord 21:255–260 Medline. doi: 10.1038/sj.ijo.0800394 PubMedCrossRefGoogle Scholar
  17. 17.
    Isozaki O, Tsushima T, Miyakawa M, Demura H, Seki H (1999) Interaction between leptin and growth hormone (GH)/IGF-I axis. Endocr J 46(Suppl):S17–S24 Medline. doi: 10.1507/endocrj.46.Suppl_S17 PubMedCrossRefGoogle Scholar
  18. 18.
    Damjanovic SS, Petakov MS, Raicevic S et al (2000) Serum leptin levels in patients with acromegaly before and after correction of hypersomatotropism by trans-sphenoidal surgery. J Clin Endocrinol Metab 85:147–154 Medline. doi: 10.1210/jc.85.1.147 PubMedCrossRefGoogle Scholar
  19. 19.
    Baldelli R, Durante C, D’Amico E, Diacono F, Tamburrano G, Casanueva FF (2003) Serum leptin levels in acromegalic patients before and during somatostatin analogs therapy. J Endocrinol Invest 26:1219–1224 MedlinePubMedGoogle Scholar
  20. 20.
    Tan KC, Tso AW, Lam KS (2001) Effect of Sandostatin LAR on serum leptin levels in patients with acromegaly. Clin Endocrinol (Oxf) 54:31–35 Medline. doi: 10.1046/j.1365-2265.2001.01180.x CrossRefGoogle Scholar
  21. 21.
    Parkinson C, Whatmore AJ, Yates AP et al (2003) The effect of pegvisomant-induced serum IGF-I normalization on serum leptin levels in patients with acromegaly. Clin Endocrinol (Oxf) 59:168–174 Medline. doi: 10.1046/j.1365-2265.2003.01795.x CrossRefGoogle Scholar
  22. 22.
    Paramo C, Fluiters E, de la Fuente J, Andrade A, Garcia-Mayor RV (2001) Monitoring of treatment success in patients with acromegaly: the value of serum insulin-like growth factor binding protein-3 and serum leptin measurements in comparison to plasma insulin-like growth factor I determination. Metabolism 50:1117–1121 Medline. doi: 10.1053/meta.2001.24882 PubMedCrossRefGoogle Scholar
  23. 23.
    Maeda N, Shimomura I, Kishida K, et al (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8:731–737 Medline. doi: 10.1038/nm724 PubMedCrossRefGoogle Scholar
  24. 24.
    Yamauchi T, Kamon J, Waki H et al (2003) Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem 278:2461–2468 Medline. doi: 10.1074/jbc.M209033200 PubMedCrossRefGoogle Scholar
  25. 25.
    Matsuzawa Y, Funahashi T, Kihara S, Shimomura I (2004) Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol 24:29–33 Medline. doi: 10.1161/01.ATV.0000099786.99623.EF PubMedCrossRefGoogle Scholar
  26. 26.
    Lam KS, Xu A, Tan KC, Wong LC, Tiu SC, Tam S (2004) Serum adiponectin is reduced in acromegaly and normalized after correction of growth hormone excess. J Clin Endocrinol Metab 89:5448–5453 Medline. doi: 10.1210/jc.2003-032023 PubMedCrossRefGoogle Scholar
  27. 27.
    Kotzmann H, Bernecker P, Hubsch P et al (1993) Bone mineral density and parameters of bone metabolism in patients with acromegaly. J Bone Miner Res 8:459–465 MedlinePubMedCrossRefGoogle Scholar
  28. 28.
    Silha JV, Krsek M, Hana V et al (2003) Perturbations in adiponectin, leptin and resistin levels in acromegaly: lack of correlation with insulin resistance. Clin Endocrinol (Oxf) 58:736–742 Medline. doi: 10.1046/j.1365-2265.2003.01789.x CrossRefGoogle Scholar
  29. 29.
    Wiesli P, Bernays R, Brandle M, Zwimpfer C, Seiler H, Zapf J, Spinas GA, Schmid C (2005) Effect of pituitary surgery in patients with acromegaly on adiponectin serum concentrations and alanine aminotransferase activity. Clin Chim Acta 352:175–181 Medline. doi: 10.1016/j.cccn.2004.09.022 PubMedCrossRefGoogle Scholar
  30. 30.
    Baum HB, Biller BM, Finkelstein JS et al (1996) Effects of physiologic growth hormone therapy on bone density and body composition in patients with adult-onset growth hormone deficiency. A randomized, placebo-controlled trial. Ann Intern Med 125:883–890 MedlinePubMedGoogle Scholar
  31. 31.
    Hoffman AR, Kuntze JE, Baptista J et al (2004) Growth hormone (GH) replacement therapy in adult-onset gh deficiency: effects on body composition in men and women in a double-blind, randomized, placebo-controlled trial. J Clin Endocrinol Metab 89:2048–2056 Medline. doi: 10.1210/jc.2003-030346 PubMedCrossRefGoogle Scholar
  32. 32.
    Liu W, Thomas SG, Asa SL, Gonzalez-Cadavid N, Bhasin S, Ezzat S (2003) Myostatin is a skeletal muscle target of growth hormone anabolic action. J Clin Endocrinol Metab 88:5490–5496 Medline. doi: 10.1210/jc.2003-030497 PubMedCrossRefGoogle Scholar
  33. 33.
    Battezzati A, Benedini S, Fattorini A et al (2003) Insulin action on protein metabolism in acromegalic patients. Am J Physiol Endocrinol Metab 284:E823–E829 MedlinePubMedGoogle Scholar
  34. 34.
    Heymsfield SB, Wang Z, Baumgartner RN, Ross R (1997) Human body composition: advances in models and methods. Ann Rev Nutr 17:527–558 Medline. doi: 10.1146/annurev.nutr.17.1.527 CrossRefGoogle Scholar
  35. 35.
    Pirlich M, Schutz T, Ockenga J et al (2003) Improved assessment of body cell mass by segmental bioimpedance analysis in malnourished subjects and acromegaly. Clin Nutr 22:167–174 Medline. doi: 10.1054/clnu.2002.0617 PubMedCrossRefGoogle Scholar
  36. 36.
    Landin K, Petruson B, Jakobsson KE, Bengtsson BA (1993) Skeletal muscle sodium and potassium changes after successful surgery in acromegaly: relation to body composition, blood glucose, plasma insulin and blood pressure. Acta Endocrinol (Copenh) 128:418–422 MedlineGoogle Scholar
  37. 37.
    Battezzati A, Bertoli S (2005) Alterations of protein metabolism in acromegaly. Curr Opin Clin Nutr Metab Care 8:53–59 Medline. doi: 10.1097/00075197-200501000-00008 PubMedCrossRefGoogle Scholar
  38. 38.
    Lucidi P, Laureti S, Santoni S et al (2000) Administration of recombinant human growth hormone on alternate days is sufficient to increase whole body protein synthesis and lipolysis in growth hormone deficient adults. Clin Endocrinol (Oxf) 52:173–179 Medline. doi: 10.1046/j.1365-2265.2000.00910.x CrossRefGoogle Scholar
  39. 39.
    Lucidi P, Lauteri M, Laureti S et al (1998) A dose-response study of growth hormone (GH) replacement on whole body protein and lipid kinetics in GH-deficient adults. J Clin Endocrinol Metab 83:353–357 Medline. doi: 10.1210/jc.83.2.353 PubMedCrossRefGoogle Scholar
  40. 40.
    Mauras N, O’Brien KO, Welch S et al (2000) Insulin-like growth factor I and growth hormone (GH) treatment in GH-deficient humans: differential effects on protein, glucose, lipid, and calcium metabolism. J Clin Endocrinol Metab 85:1686–1694 Medline. doi: 10.1210/jc.85.4.1686 PubMedCrossRefGoogle Scholar
  41. 41.
    Nagulesparen M, Trickey R, Davies MJ, Jenkins JS (1976) Muscle changes in acromegaly. BMJ 2:914–915 MedlinePubMedCrossRefGoogle Scholar
  42. 42.
    Brumback RA, Barr CE (1983) Myopathy in acromegaly. A case study. Pathol Res Pract 177:41–46 MedlinePubMedGoogle Scholar
  43. 43.
    Pickett JB, Layzer RB, Levin SR, Scheider V, Campbell MJ, Sumner AJ (1975) Neuromuscular complications of acromegaly. Neurology 25:638–645 MedlinePubMedGoogle Scholar
  44. 44.
    Kassem M, Mosekilde L, Eriksen EF (1994) Growth hormone stimulates proliferation of normal human bone marrow stromal osteoblast precursor cells in vitro. Growth Regul 4:131–135 MedlinePubMedGoogle Scholar
  45. 45.
    Nishiyama K, Sugimoto T, Kaji H, Kanatani M, Kobayashi T, Chihara K (1996) Stimulatory effect of growth hormone on bone resorption and osteoclast differentiation. Endocrinology 137:35–41 Medline. doi: 10.1210/en.137.1.35 PubMedCrossRefGoogle Scholar
  46. 46.
    Tauchmanova L, Di Somma C, Rusciano A, Lombardi G, Colao A (2007) The role for growth hormone in linking arthritis, osteoporosis, and body composition. J Endocrinol Invest 30:35–41 MedlinePubMedGoogle Scholar
  47. 47.
    Colao A, Pivonello R, Scarpa R, Vallone G, Ruosi C, Lombardi G (2005) The acromegalic arthropathy. J Endocrinol Invest 28:24–31 MedlinePubMedGoogle Scholar
  48. 48.
    Scillitani A, Battista C, Chiodini I et al (2003) Bone mineral density in acromegaly: the effect of gender, disease activity and gonadal status. Clin Endocrinol (Oxf) 58:725–731 Medline. doi: 10.1046/j.1365-2265.2003.01777.x CrossRefGoogle Scholar
  49. 49.
    Bolanowski M, Daroszewski J, Medras M, Zadrozna-Sliwka B (2006) Bone mineral density and turnover in patients with acromegaly in relation to sex, disease activity, and gonadal function. J Bone Miner Metab 24:72–78 Medline. doi: 10.1007/s00774-005-0649-9 PubMedCrossRefGoogle Scholar
  50. 50.
    Lesse GP, Fraser WD, Farquharson R, Hipkin L, Vora JP (1998) Gonadal status is an important determinant of bone density in acromegaly. Clin Endocrinol (Oxf) 48:59–65 Medline. doi: 10.1046/j.1365-2265.1998.00349.x CrossRefGoogle Scholar
  51. 51.
    Tutuncu NB, Erbas T (2004) Factors associated with bone metabolism in acromegalic patients: hypogonadism and female gender. Exp Clin Endocrinol Diabetes 112:328–332 Medline. doi: 10.1055/s-2004-820913 PubMedCrossRefGoogle Scholar
  52. 52.
    Ueland T, Fougner SL, Godang K, Schreiner T, Bollerslev J (2006) Serum GH and IGF-I are significant determinants of bone turnover but not bone mineral density in active acromegaly: a prospective study of more than 70 consecutive patients. Eur J Endocrinol 155:709–715 Medline. doi: 10.1530/eje.1.02285 PubMedCrossRefGoogle Scholar
  53. 53.
    Diamond T, Nery L, Posen S (1989) Spinal and peripheral bone mineral densities in acromegaly: the effects of excess growth hormone and hypogonadism. Ann Intern Med 111:567–573 MedlinePubMedGoogle Scholar
  54. 54.
    Jockenhovel F, Rohrbach S, Deggerich S, Reinwein D, Reiners C (1996) Differential presentation of cortical and trabecular peripheral bone mineral density in acromegaly. Eur J Med Res 1:377–382 MedlinePubMedGoogle Scholar
  55. 55.
    Parkinson C, Kassem M, Heickendorff L, Flyvbjerg A, Trainer PJ (2003) Pegvisomant-induced serum insulin-like growth factor-I normalization in patients with acromegaly returns elevated markers of bone turnover to normal. J Clin Endocrinol Metab 88:5650–5655 Medline. doi: 10.1210/jc.2003-030772 PubMedCrossRefGoogle Scholar
  56. 56.
    Fairfield WP, Sesmilo G, Katznelson L et al (2002) Effects of a growth hormone receptor antagonist on bone markers in acromegaly. Clin Endocrinol (Oxf) 57:385–390 Medline. doi: 10.1046/j.1365-2265.2002.01624.x CrossRefGoogle Scholar
  57. 57.
    Marazuela M, Astigarraga B, Tabuenca MJ, Estrada J, Marin F, Lucas T (1993) Serum bone Gla protein as a marker of bone turnover in acromegaly. Calcif Tissue Int 52:419–421 Medline. doi: 10.1007/BF00571329 PubMedCrossRefGoogle Scholar
  58. 58.
    Piovesan A, Terzolo M, Reimondo G et al (1994) Biochemical markers of bone and collagen turnover in acromegaly or Cushing’s syndrome. Horm Metab Res 26:234–237 MedlinePubMedCrossRefGoogle Scholar
  59. 59.
    Vestergaard P, Mosekilde L (2004) Fracture risk is decreased in acromegaly–a potential beneficial effect of growth hormone. Osteoporos Int 15:155–159 Medline. doi: 10.1007/s00198-003-1531-z PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Stanford University School of MedicineStanfordUSA

Personalised recommendations