, Volume 8, Issue 3–4, pp 213–217 | Cite as

Pituitary Function During Severe and Life-threatening Illnesses

  • C. Gauna
  • G. H. van den Berghe
  • A. J. van der Lely


The catabolic state of prolonged critical illness is associated with a low activity of anterior pituitary functions. Before considering endocrine intervention in these conditions, a detailed understanding of the neuroendocrinology of the stress response is warranted. It is now clear that the acute phase and the later phase of critical illness behave differently from an endocrinological point of view. When the disease process becomes prolonged, there is a uniformly-reduced pulsatile secretion of anterior pituitary hormones with proportionally reduced concentrations of peripheral anabolic hormones. Apparently, there is a constant interaction between neuroendocrine and internal immunoregulatory mechanisms that assures the fine tuning of both the neuro-endocrine and the immune system, so that both are able to preserve homeostasis of patients during severe and life-threatening illnesses.

Key Words

acute disease chronic disease critical illness endocrine system physiology physiopathology energy metabolism humans stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bondanelli M, Ambrosio MR, Zatelli MC, De Marinis L, et al. Hypopituitarism After Traumatic Brain Injury. Eur J Endocrinol 2005;152:679–691.CrossRefPubMedGoogle Scholar
  2. 2.
    Agha A, Thornton E, O'Kelly P, Tormey W, et al. Posterior Pituitary Dysfunction After Traumatic Brain Injury. J Clin Endocrinol Metab 2004;89:5987–5992.PubMedGoogle Scholar
  3. 3.
    Aimaretti G, Ambrosio MR, Di Somma C, Fusco A, et al. Traumatic Brain Injury and Subarachnoid Haemorrhage Are Conditions at High Risk for Hypopituitarism: Screening Study at 3 Months After the Brain Injury. Clin Endocrinol (Oxf) 2004;61:320–326.CrossRefGoogle Scholar
  4. 4.
    Borg J, Holm L, Cassidy JD, Peloso PM, et al. Diagnostic Procedures in Mild Traumatic Brain Injury: Results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med 2004;61–75.Google Scholar
  5. 5.
    Dimopoulou I, Tsagarakis S, Theodorakopoulou M, Douka E, et al. Endocrine Abnormalities in Critical Care Patients With Moderate-to-Severe Head Trauma: Incidence, Pattern and Predisposing Factors. Intensive Care Med 2004;30:1051–1057.PubMedGoogle Scholar
  6. 6.
    Van den Berghe GH, de Zegher F. Anterior Pituitary Function During Critical Illness and Dopamine Treatment. Crit Care Med 1996;24:1580–1590.PubMedGoogle Scholar
  7. 7.
    Van den Berghe GH, de Zegher F, Baxter RC, Veldhuis JD, et al. Neuroendocrinology of Prolonged Critical Illness: Effects of Exogenous Thyrotropin-Releasing Hormone and Its Combination With Growth Hormone Secretagogues. J Clin Endocrinol Metab 1998;83:309–319.PubMedGoogle Scholar
  8. 8.
    Van den Berghe GH. Dynamic Neuroendocrine Responses to Critical Illness. Front Neuroendocrinol 2002;23:370–391.PubMedGoogle Scholar
  9. 9.
    Van den Berghe GH. Neuroendocrine Pathobiology of Chronic Critical Illness. Crit Care Clin 2002;18:509–528.PubMedGoogle Scholar
  10. 10.
    Van den Berghe GH. Acute and Prolonged Critical Illness Are Two Distinct Neuroendocrine Paradigms. Verh K Acad Geneeskd Belg 1998;60:487–518.PubMedGoogle Scholar
  11. 11.
    Van den Berghe GH. Endocrine Evaluation of Patients With Critical Illness. Endocrinol Metab Clin North Am 2003;32:385–410.PubMedGoogle Scholar
  12. 12.
    Weekers F, Giulietti AP, Michalaki M, Coopmans W, et al. Metabolic, Endocrine, and Immune Effects of Stress Hyperglycemia in a Rabbit Model of Prolonged Critical Illness. Endocrinology 2003;144:5329–5338.CrossRefPubMedGoogle Scholar
  13. 13.
    Weekers F, Michalaki M, Coopmans W, Van Herck E. et al. Endocrine and Metabolic Effects of Growth Hormone (GH) Compared With GH-Releasing Peptide, Thyrotropin-Releasing Hormone, and Insulin Infusion in a Rabbit Model of Prolonged Critical Illness. Endocrinology 2004;145:205–213.PubMedGoogle Scholar
  14. 14.
    Vanhorebeek I, Van den BG. Hormonal and Metabolic Strategies to Attenuate Catabolism in Critically Ill Patients. Curr Opin Pharmacol 2004;4:621–628.PubMedGoogle Scholar
  15. 15.
    Van den Berghe GH. Role of Intravenous Insulin Therapy in Critically Ill Patients. Endocr Pract 2004;10(Suppl 2):17–20.:17–20.Google Scholar
  16. 16.
    Van den Berghe GH, Wouters P, Weekers F, Verwaest C, et al. Intensive Insulin Therapy in the Critically Ill Patients. N Engl J Med 2001;345:1359–1367.CrossRefPubMedGoogle Scholar
  17. 17.
    Van den Berghe GH. Insulin Therapy for the Critically Ill Patient. Clin Cornerstone 2003;5:56–63.CrossRefPubMedGoogle Scholar
  18. 18.
    Van den Berghe GH, Wouters PJ, Bouillon R, Weekers F, et al. Outcome Benefit of Intensive Insulin Therapy in the Critically Ill: Insulin Dose Versus Glycemic Control. Crit Care Med 2003;31:359–366.PubMedGoogle Scholar
  19. 19.
    Gardelis JG, Hatzis TD, Stamogiannou LN, Dona AA, et al. Activity of the Growth Hormone/Insulin-Like Growth Factor-I Axis in Critically Ill Children. J Pediatr Endocrinol Metab 2005;18:363–372.PubMedGoogle Scholar
  20. 20.
    Cogo PE, Carnielli VP, Rosso F, Cesarone A, et al. Protein Turnover, Lipolysis, and Endogenous Hormonal Secretion in Critically Ill Children. Crit Care Med 2002;30:65–70.PubMedGoogle Scholar
  21. 21.
    Balcells J, Moreno A, Audi L, Roqueta J, et al. Growth Hormone/Insulin-Like Growth Factors Axis in Children Undergoing Cardiac Surgery. Crit Care Med 2001;29:1234–1238.PubMedGoogle Scholar
  22. 22.
    Baxter RC. Changes in the IGF-IGFBP Axis in Critical Illness. Best Pract Res Clin Endocrinol Metab 2001;15:421–434.CrossRefPubMedGoogle Scholar
  23. 23.
    Kavelaars A, Cobelens PM, Teunis MA, Heijnen CJ. Changes in Innate and Acquired Immune Responses in Mice With Targeted Deletion of the Dopamine Transporter Gene. J Neuroimmunol 2005;161:162–168.CrossRefPubMedGoogle Scholar
  24. 24.
    Angeli A, Minetto M, Dovio A, Paccotti P. The Overtraining Syndrome in Athletes: a Stress-Related Disorder. J Endocrinol Invest 2004;27:603–612.PubMedGoogle Scholar
  25. 25.
    van Winsen LM, Muris DF, Polman CH, Dijkstra CD, et al. Sensitivity to Glucocorticoids Is Decreased in Relapsing Remitting Multiple Sclerosis. J Clin Endocrinol Metab 2005;90:734–740.PubMedGoogle Scholar
  26. 26.
    Turrin NP, Rivest S. Unraveling the Molecular Details Involved in the Intimate Link Between the Immune and Neuroendocrine Systems. Exp Biol Med (Maywood) 2004;229:996–1006.Google Scholar
  27. 27.
    Boelen A, Kwakkel J, Platvoet-ter Schiphorst M, Mentrup B, et al. Interleukin-18, a Proinflammatory Cytokine, Contributes to the Pathogenesis of Non-Thyroidal Illness Mainly Via the Central Part of the Hypothalamus-Pituitary-Thyroid Axis. Eur J Endocrinol 2004;151:497–502.CrossRefPubMedGoogle Scholar
  28. 28.
    Brand JM, Frohn C, Cziupka K, Brockmann C, et al. Prolactin Triggers Pro-Inflammatory Immune Responses in Peripheral Immune Cells. Eur Cytokine Netw 2004;15:99–104.PubMedGoogle Scholar
  29. 29.
    Talhouk RS, Saade NE, Mouneimne G, Masaad CA, et al. Growth Hormone Releasing Hormone Reverses Endotoxin-Induced Localized Inflammatory Hyperalgesia Without Reducing the Upregulated Cytokines, Nerve Growth Factor and Gelatinase Activity. Prog Neuropsychopharmacol Biol Psychiatry 2004;28:625–631.CrossRefPubMedGoogle Scholar
  30. 30.
    Toni R, Malaguti A, Castorina S, Roti E, et al. New Paradigms in Neuroendocrinology: Relationships Between Obesity, Systemic Inflammation and the Neuroendocrine System. J Endocrinol Invest 2004;27:182–186.PubMedGoogle Scholar
  31. 31.
    Eskandari F, Webster JI, Sternberg EM. Neural Immune Pathways and Their Connection to Inflammatory Diseases. Arthritis Res Ther 2003;5:251–265.CrossRefPubMedGoogle Scholar
  32. 32.
    Kariagina A, Romanenko D, Ren SG, Chesnokova V. Hypothalamic-Pituitary Cytokine Network. Endocrinology 2004;145:104–112.PubMedGoogle Scholar
  33. 33.
    Anisman H, Baines MG, Berczi I, Bernstein CN, et al. Neuroimmune Mechanisms in Health and Disease: 2. Disease. CMAJ 1996;155:1075–1082.PubMedGoogle Scholar
  34. 34.
    Foster SC, Daniels C, Bourdette DN, Bebo BF Jr., Dysregulation of the Hypothalamic-Pituitary-Gonadal Axis in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. J Neuroimmunol 2003;140:78–87.CrossRefPubMedGoogle Scholar
  35. 35.
    Straub RH, Pongratz G, Scholmerich J, Kees F, et al. Long-Term Anti-Tumor Necrosis Factor Antibody Therapy in Rheumatoid Arthritis Patients Sensitizes the Pituitary Gland and Favors Adrenal Androgen Secretion. Arthritis Rheum 2003;48:1504–1512.PubMedGoogle Scholar
  36. 36.
    Xiao E, Xia-Zhang L, Vulliemoz NR, Ferin M, et al. Agouti-Related Protein Stimulates the Hypothalamic-Pituitary-Adrenal (HPA) Axis and Enhances the HPA Response to Interleukin-1 in the Primate. Endocrinology 2003;144:1736–1741.PubMedGoogle Scholar
  37. 37.
    Francis K, Lewis BM, Akatsu H, Monk PN, et al. Complement C3a Receptors in the Pituitary Gland: a Novel Pathway by Which an Innate Immune Molecule Releases Hormones Involved in the Control of Inflammation. FASEB J 2003;17:2266–2268.PubMedGoogle Scholar
  38. 38.
    Berczi I. The Role of the Growth and Lactogenic Hormone Family in Immune Function. Neuroimmunomodulation 1994;1:201–216.PubMedGoogle Scholar
  39. 39.
    Corbacho AM, Macotela Y, Nava G, Eiserich JP, et al. Cytokine Induction of Prolactin Receptors Mediates Prolactin Inhibition of Nitric Oxide Synthesis in Pulmonary Fibroblasts. FEBS Lett 2003;544:171–175.CrossRefPubMedGoogle Scholar
  40. 40.
    Jorgensen C, Sany J. Modulation of the Immune Response by the Neuro-Endocrine Axis in Rheumatoid Arthritis. Clin Exp Rheumatol 1994;12:435–441.PubMedGoogle Scholar
  41. 41.
    Oberbeck R, Schmitz D, Wilsenack K, Schuler M, et al. Prolactin Modulates Survival and Cellular Immune Functions in Septic Mice. J Surg Res 2003;113:248–256.CrossRefPubMedGoogle Scholar
  42. 42.
    Sakane T, Suzuki N. Neuro-Endocrine-Immune Axis in Human Rheumatoid Arthritis. Arch Immunol Ther Exp (Warsz) 2000;48:417–427.Google Scholar
  43. 43.
    Templ E, Koeller M, Riedl M, Wagner O, et al. Anterior Pituitary Function in Patients With Newly Diagnosed Rheumatoid Arthritis. Br J Rheumatol 1996;35:350–356.PubMedGoogle Scholar
  44. 44.
    Walton PE, Cronin MJ, Tumor Necrosis Factor-Alpha and Interferon-Gamma Reduce Prolactin Release in Vitro. Am J Physiol 1990;259:E672–E676.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • C. Gauna
    • 1
  • G. H. van den Berghe
    • 2
  • A. J. van der Lely
    • 1
  1. 1.Department of Internal Medicine, Head of EndocrinologyErasmus MCCA RotterdamThe Netherlands
  2. 2.Department of Intensive Care Medicine, University Hospital GasthuisbergUniversity of LeuvenLeuvenBelgium

Personalised recommendations