Skip to main content

Advertisement

Log in

Pituitary Function During Severe and Life-threatening Illnesses

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

The catabolic state of prolonged critical illness is associated with a low activity of anterior pituitary functions. Before considering endocrine intervention in these conditions, a detailed understanding of the neuroendocrinology of the stress response is warranted. It is now clear that the acute phase and the later phase of critical illness behave differently from an endocrinological point of view. When the disease process becomes prolonged, there is a uniformly-reduced pulsatile secretion of anterior pituitary hormones with proportionally reduced concentrations of peripheral anabolic hormones. Apparently, there is a constant interaction between neuroendocrine and internal immunoregulatory mechanisms that assures the fine tuning of both the neuro-endocrine and the immune system, so that both are able to preserve homeostasis of patients during severe and life-threatening illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bondanelli M, Ambrosio MR, Zatelli MC, De Marinis L, et al. Hypopituitarism After Traumatic Brain Injury. Eur J Endocrinol 2005;152:679–691.

    Article  CAS  PubMed  Google Scholar 

  2. Agha A, Thornton E, O'Kelly P, Tormey W, et al. Posterior Pituitary Dysfunction After Traumatic Brain Injury. J Clin Endocrinol Metab 2004;89:5987–5992.

    CAS  PubMed  Google Scholar 

  3. Aimaretti G, Ambrosio MR, Di Somma C, Fusco A, et al. Traumatic Brain Injury and Subarachnoid Haemorrhage Are Conditions at High Risk for Hypopituitarism: Screening Study at 3 Months After the Brain Injury. Clin Endocrinol (Oxf) 2004;61:320–326.

    Article  CAS  Google Scholar 

  4. Borg J, Holm L, Cassidy JD, Peloso PM, et al. Diagnostic Procedures in Mild Traumatic Brain Injury: Results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med 2004;61–75.

  5. Dimopoulou I, Tsagarakis S, Theodorakopoulou M, Douka E, et al. Endocrine Abnormalities in Critical Care Patients With Moderate-to-Severe Head Trauma: Incidence, Pattern and Predisposing Factors. Intensive Care Med 2004;30:1051–1057.

    PubMed  Google Scholar 

  6. Van den Berghe GH, de Zegher F. Anterior Pituitary Function During Critical Illness and Dopamine Treatment. Crit Care Med 1996;24:1580–1590.

    CAS  PubMed  Google Scholar 

  7. Van den Berghe GH, de Zegher F, Baxter RC, Veldhuis JD, et al. Neuroendocrinology of Prolonged Critical Illness: Effects of Exogenous Thyrotropin-Releasing Hormone and Its Combination With Growth Hormone Secretagogues. J Clin Endocrinol Metab 1998;83:309–319.

    CAS  PubMed  Google Scholar 

  8. Van den Berghe GH. Dynamic Neuroendocrine Responses to Critical Illness. Front Neuroendocrinol 2002;23:370–391.

    CAS  PubMed  Google Scholar 

  9. Van den Berghe GH. Neuroendocrine Pathobiology of Chronic Critical Illness. Crit Care Clin 2002;18:509–528.

    CAS  PubMed  Google Scholar 

  10. Van den Berghe GH. Acute and Prolonged Critical Illness Are Two Distinct Neuroendocrine Paradigms. Verh K Acad Geneeskd Belg 1998;60:487–518.

    CAS  PubMed  Google Scholar 

  11. Van den Berghe GH. Endocrine Evaluation of Patients With Critical Illness. Endocrinol Metab Clin North Am 2003;32:385–410.

    CAS  PubMed  Google Scholar 

  12. Weekers F, Giulietti AP, Michalaki M, Coopmans W, et al. Metabolic, Endocrine, and Immune Effects of Stress Hyperglycemia in a Rabbit Model of Prolonged Critical Illness. Endocrinology 2003;144:5329–5338.

    Article  CAS  PubMed  Google Scholar 

  13. Weekers F, Michalaki M, Coopmans W, Van Herck E. et al. Endocrine and Metabolic Effects of Growth Hormone (GH) Compared With GH-Releasing Peptide, Thyrotropin-Releasing Hormone, and Insulin Infusion in a Rabbit Model of Prolonged Critical Illness. Endocrinology 2004;145:205–213.

    CAS  PubMed  Google Scholar 

  14. Vanhorebeek I, Van den BG. Hormonal and Metabolic Strategies to Attenuate Catabolism in Critically Ill Patients. Curr Opin Pharmacol 2004;4:621–628.

    CAS  PubMed  Google Scholar 

  15. Van den Berghe GH. Role of Intravenous Insulin Therapy in Critically Ill Patients. Endocr Pract 2004;10(Suppl 2):17–20.:17–20.

    Google Scholar 

  16. Van den Berghe GH, Wouters P, Weekers F, Verwaest C, et al. Intensive Insulin Therapy in the Critically Ill Patients. N Engl J Med 2001;345:1359–1367.

    Article  CAS  PubMed  Google Scholar 

  17. Van den Berghe GH. Insulin Therapy for the Critically Ill Patient. Clin Cornerstone 2003;5:56–63.

    Article  PubMed  Google Scholar 

  18. Van den Berghe GH, Wouters PJ, Bouillon R, Weekers F, et al. Outcome Benefit of Intensive Insulin Therapy in the Critically Ill: Insulin Dose Versus Glycemic Control. Crit Care Med 2003;31:359–366.

    CAS  PubMed  Google Scholar 

  19. Gardelis JG, Hatzis TD, Stamogiannou LN, Dona AA, et al. Activity of the Growth Hormone/Insulin-Like Growth Factor-I Axis in Critically Ill Children. J Pediatr Endocrinol Metab 2005;18:363–372.

    CAS  PubMed  Google Scholar 

  20. Cogo PE, Carnielli VP, Rosso F, Cesarone A, et al. Protein Turnover, Lipolysis, and Endogenous Hormonal Secretion in Critically Ill Children. Crit Care Med 2002;30:65–70.

    CAS  PubMed  Google Scholar 

  21. Balcells J, Moreno A, Audi L, Roqueta J, et al. Growth Hormone/Insulin-Like Growth Factors Axis in Children Undergoing Cardiac Surgery. Crit Care Med 2001;29:1234–1238.

    CAS  PubMed  Google Scholar 

  22. Baxter RC. Changes in the IGF-IGFBP Axis in Critical Illness. Best Pract Res Clin Endocrinol Metab 2001;15:421–434.

    Article  CAS  PubMed  Google Scholar 

  23. Kavelaars A, Cobelens PM, Teunis MA, Heijnen CJ. Changes in Innate and Acquired Immune Responses in Mice With Targeted Deletion of the Dopamine Transporter Gene. J Neuroimmunol 2005;161:162–168.

    Article  CAS  PubMed  Google Scholar 

  24. Angeli A, Minetto M, Dovio A, Paccotti P. The Overtraining Syndrome in Athletes: a Stress-Related Disorder. J Endocrinol Invest 2004;27:603–612.

    CAS  PubMed  Google Scholar 

  25. van Winsen LM, Muris DF, Polman CH, Dijkstra CD, et al. Sensitivity to Glucocorticoids Is Decreased in Relapsing Remitting Multiple Sclerosis. J Clin Endocrinol Metab 2005;90:734–740.

    CAS  PubMed  Google Scholar 

  26. Turrin NP, Rivest S. Unraveling the Molecular Details Involved in the Intimate Link Between the Immune and Neuroendocrine Systems. Exp Biol Med (Maywood) 2004;229:996–1006.

    CAS  Google Scholar 

  27. Boelen A, Kwakkel J, Platvoet-ter Schiphorst M, Mentrup B, et al. Interleukin-18, a Proinflammatory Cytokine, Contributes to the Pathogenesis of Non-Thyroidal Illness Mainly Via the Central Part of the Hypothalamus-Pituitary-Thyroid Axis. Eur J Endocrinol 2004;151:497–502.

    Article  CAS  PubMed  Google Scholar 

  28. Brand JM, Frohn C, Cziupka K, Brockmann C, et al. Prolactin Triggers Pro-Inflammatory Immune Responses in Peripheral Immune Cells. Eur Cytokine Netw 2004;15:99–104.

    CAS  PubMed  Google Scholar 

  29. Talhouk RS, Saade NE, Mouneimne G, Masaad CA, et al. Growth Hormone Releasing Hormone Reverses Endotoxin-Induced Localized Inflammatory Hyperalgesia Without Reducing the Upregulated Cytokines, Nerve Growth Factor and Gelatinase Activity. Prog Neuropsychopharmacol Biol Psychiatry 2004;28:625–631.

    Article  CAS  PubMed  Google Scholar 

  30. Toni R, Malaguti A, Castorina S, Roti E, et al. New Paradigms in Neuroendocrinology: Relationships Between Obesity, Systemic Inflammation and the Neuroendocrine System. J Endocrinol Invest 2004;27:182–186.

    CAS  PubMed  Google Scholar 

  31. Eskandari F, Webster JI, Sternberg EM. Neural Immune Pathways and Their Connection to Inflammatory Diseases. Arthritis Res Ther 2003;5:251–265.

    Article  CAS  PubMed  Google Scholar 

  32. Kariagina A, Romanenko D, Ren SG, Chesnokova V. Hypothalamic-Pituitary Cytokine Network. Endocrinology 2004;145:104–112.

    CAS  PubMed  Google Scholar 

  33. Anisman H, Baines MG, Berczi I, Bernstein CN, et al. Neuroimmune Mechanisms in Health and Disease: 2. Disease. CMAJ 1996;155:1075–1082.

    CAS  PubMed  Google Scholar 

  34. Foster SC, Daniels C, Bourdette DN, Bebo BF Jr., Dysregulation of the Hypothalamic-Pituitary-Gonadal Axis in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. J Neuroimmunol 2003;140:78–87.

    Article  CAS  PubMed  Google Scholar 

  35. Straub RH, Pongratz G, Scholmerich J, Kees F, et al. Long-Term Anti-Tumor Necrosis Factor Antibody Therapy in Rheumatoid Arthritis Patients Sensitizes the Pituitary Gland and Favors Adrenal Androgen Secretion. Arthritis Rheum 2003;48:1504–1512.

    CAS  PubMed  Google Scholar 

  36. Xiao E, Xia-Zhang L, Vulliemoz NR, Ferin M, et al. Agouti-Related Protein Stimulates the Hypothalamic-Pituitary-Adrenal (HPA) Axis and Enhances the HPA Response to Interleukin-1 in the Primate. Endocrinology 2003;144:1736–1741.

    CAS  PubMed  Google Scholar 

  37. Francis K, Lewis BM, Akatsu H, Monk PN, et al. Complement C3a Receptors in the Pituitary Gland: a Novel Pathway by Which an Innate Immune Molecule Releases Hormones Involved in the Control of Inflammation. FASEB J 2003;17:2266–2268.

    CAS  PubMed  Google Scholar 

  38. Berczi I. The Role of the Growth and Lactogenic Hormone Family in Immune Function. Neuroimmunomodulation 1994;1:201–216.

    CAS  PubMed  Google Scholar 

  39. Corbacho AM, Macotela Y, Nava G, Eiserich JP, et al. Cytokine Induction of Prolactin Receptors Mediates Prolactin Inhibition of Nitric Oxide Synthesis in Pulmonary Fibroblasts. FEBS Lett 2003;544:171–175.

    Article  CAS  PubMed  Google Scholar 

  40. Jorgensen C, Sany J. Modulation of the Immune Response by the Neuro-Endocrine Axis in Rheumatoid Arthritis. Clin Exp Rheumatol 1994;12:435–441.

    CAS  PubMed  Google Scholar 

  41. Oberbeck R, Schmitz D, Wilsenack K, Schuler M, et al. Prolactin Modulates Survival and Cellular Immune Functions in Septic Mice. J Surg Res 2003;113:248–256.

    Article  CAS  PubMed  Google Scholar 

  42. Sakane T, Suzuki N. Neuro-Endocrine-Immune Axis in Human Rheumatoid Arthritis. Arch Immunol Ther Exp (Warsz) 2000;48:417–427.

    CAS  Google Scholar 

  43. Templ E, Koeller M, Riedl M, Wagner O, et al. Anterior Pituitary Function in Patients With Newly Diagnosed Rheumatoid Arthritis. Br J Rheumatol 1996;35:350–356.

    CAS  PubMed  Google Scholar 

  44. Walton PE, Cronin MJ, Tumor Necrosis Factor-Alpha and Interferon-Gamma Reduce Prolactin Release in Vitro. Am J Physiol 1990;259:E672–E676.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. van der Lely.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauna, C., den Berghe, G.H.v. & der Lely, A.J.v. Pituitary Function During Severe and Life-threatening Illnesses. Pituitary 8, 213–217 (2005). https://doi.org/10.1007/s11102-006-6043-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-006-6043-3

Key Words

Navigation