, Volume 9, Issue 3, pp 179–192 | Cite as

RET and neuroendocrine tumors

  • Yoshiki Murakumo
  • Mayumi Jijiwa
  • Naoya Asai
  • Masatoshi Ichihara
  • Masahide Takahashi


The RET proto-oncogene encodes a receptor tyrosine kinase that is a main component of the signaling pathway activated by the glial cell line-derived neurotrophic factor family ligands. Gene targeting studies revealed that signaling through RET plays a crucial role in neuronal and renal organogenesis. It is well-known that germline mutations in RET lead to the human inherited diseases, multiple endocrine neoplasia type 2 (MEN 2) and Hirschsprung’s disease, and that somatic rearrangements of RET cause papillary thyroid carcinoma. Due to marked advances in understanding of the molecular mechanisms of the development of MEN 2, a consensus on MEN 2 management associated with RET status is being reached and currently put into general use as a guideline. In this review, we summarize progress in the study of RET from bench to bedside, focusing on pathophysiology of neuroendocrine tumors.


RET Tyrosine kinase Signaling pathway Germline mutation Neuroendocrine tumors MEN 2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Takahashi M, Ritz J, Cooper GM (1985) Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42:581–588PubMedGoogle Scholar
  2. 2.
    Takahashi M, Cooper GM (1987) ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol Cell Biol 7:1378–1385PubMedGoogle Scholar
  3. 3.
    Takahashi M, Inaguma Y, Hiai H, Hirose F (1988) Developmentally regulated expression of a human “finger”-containing gene encoded by the 5′ half of the ret transforming gene. Mol Cell Biol 8:1853–1856PubMedGoogle Scholar
  4. 4.
    Pachnis V, Mankoo B, Costantini F (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119:1005–1017PubMedGoogle Scholar
  5. 5.
    Avantaggiato V, Dathan NA, Grieco M, Fabien N, Lazzaro D, Fusco A, Simeone A, Santoro M (1994) Developmental expression of the RET protooncogene. Cell Growth Differ 5:305–311PubMedGoogle Scholar
  6. 6.
    Tsuzuki T, Takahashi M, Asai N, Iwashita T, Matsuyama M, Asai J (1995) Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant and adult rat tissues. Oncogene 10:191–198PubMedGoogle Scholar
  7. 7.
    Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383PubMedGoogle Scholar
  8. 8.
    Durbec PL, Larsson-Blomberg LB, Schuchardt A, Costantini F, Pachnis V (1996) Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 122:349–358PubMedGoogle Scholar
  9. 9.
    Taraviras S, Marcos-Gutierrez CV, Durbec P, Jani H, Grigoriou M, Sukumaran M, Wang LC, Hynes M, Raisman G, Pachnis V (1999) Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development 126:2785–2797PubMedGoogle Scholar
  10. 10.
    Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, Pierotti MA, Della Porta G, Fusco A, Vecchio G (1990) PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60:557–563PubMedGoogle Scholar
  11. 11.
    Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, Love DR, Mole SE, Moore JK, Papi L, Ponder MA, Telenius H, Tunnacliffe A, Ponder BJ (1993) Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363:458–460PubMedGoogle Scholar
  12. 12.
    Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC, Howe JR, Moley JF, Goodfellow P, Wells SA Jr (1993) Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 2:851–856PubMedGoogle Scholar
  13. 13.
    Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, Pasini B, Hoppener JW, van Amstel HK, Romeo G, Lips CJ, Buys CH (1994) A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367:375–376PubMedGoogle Scholar
  14. 14.
    Carlson KM, Dou S, Chi D, Scavarda N, Toshima K, Jackson CE, Wells SA Jr, Goodfellow PJ, Donis-Keller H (1994) Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci USA 91:1579–1583PubMedGoogle Scholar
  15. 15.
    Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, Pasini B, Bocciardi R, Lerone M, Kaariainen H, Martucciello G (1994) Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s disease. Nature 367:377–378PubMedGoogle Scholar
  16. 16.
    Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, Holder S, Nihoul-Fekete C, Ponder BA, Munnich A (1994) Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature 367:378–380PubMedGoogle Scholar
  17. 17.
    Ishizaka Y, Itoh F, Tahira T, Ikeda I, Sugimura T, Tucker J, Fertitta A, Carrano AV, Nagao M (1989) Human ret proto-oncogene mapped to chromosome 10q11.2. Oncogene 4:1519–1521PubMedGoogle Scholar
  18. 18.
    Pasini B, Hofstra RM, Yin L, Bocciardi R, Santamaria G, Grootscholten PM, Ceccherini I, Patrone G, Priolo M, Buys CH, Romeo G (1995) The physical map of the human RET proto-oncogene. Oncogene 11:1737–1743PubMedGoogle Scholar
  19. 19.
    Takahashi M, Buma Y, Iwamoto T, Inaguma Y, Ikeda H, Hiai H (1988) Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 3:571–578PubMedGoogle Scholar
  20. 20.
    Takahashi M, Buma Y, Hiai H (1989) Isolation of ret proto-oncogene cDNA with an amino-terminal signal sequence. Oncogene 4:805–806PubMedGoogle Scholar
  21. 21.
    Iwamoto T, Taniguchi M, Asai N, Ohkusu K, Nakashima I, Takahashi M (1993) cDNA cloning of mouse ret proto-oncogene and its sequence similarity to the cadherin superfamily. Oncogene 8:1087–1091PubMedGoogle Scholar
  22. 22.
    Tahira T, Ishizaka Y, Itoh F, Sugimura T, Nagao M (1990) Characterization of ret proto-oncogene mRNAs encoding two isoforms of the protein product in a human neuroblastoma cell line. Oncogene 5:97–102PubMedGoogle Scholar
  23. 23.
    Myers SM, Eng C, Ponder BA, Mulligan LM (1995) Characterization of RET proto-oncogene 3’ splicing variants and polyadenylation sites: a novel C-terminus for RET. Oncogene 11:2039–2045PubMedGoogle Scholar
  24. 24.
    Trupp M, Belluardo N, Funakoshi H, Ibanez CF (1997) Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-alpha indicates multiple mechanisms of trophic actions in the adult rat CNS. J Neurosci 17:3554–3567PubMedGoogle Scholar
  25. 25.
    Enomoto H, Crawford PA, Gorodinsky A, Heuckeroth RO, Johnson EM Jr, Milbrandt J (2001) RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development 128:3963–3974PubMedGoogle Scholar
  26. 26.
    Nagao M, Ishizaka Y, Nakagawara A, Kohno K, Kuwano M, Tahira T, Itoh F, Ikeda I, Sugimura T (1990) Expression of ret proto-oncogene in human neuroblastomas. Jpn J Cancer Res 81:309–312PubMedGoogle Scholar
  27. 27.
    Ikeda I, Ishizaka Y, Tahira T, Suzuki T, Onda M, Sugimura T, Nagao M (1990) Specific expression of the ret proto-oncogene in human neuroblastoma cell lines. Oncogene 5:1291–1296PubMedGoogle Scholar
  28. 28.
    Santoro M, Rosati R, Grieco M, Berlingieri MT, D’Amato GL, de Franciscis V, Fusco A (1990) The ret proto-oncogene is consistently expressed in human pheochromocytomas and thyroid medullary carcinomas. Oncogene 5:1595–1598PubMedGoogle Scholar
  29. 29.
    Takahashi M, Buma Y, Taniguchi M (1991) Identification of the ret proto-oncogene products in neuroblastoma and leukemia cells. Oncogene 6:297–301PubMedGoogle Scholar
  30. 30.
    de Graaff E, Srinivas S, Kilkenny C, D’Agati V, Mankoo BS, Costantini F, Pachnis V (2001) Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev 15:2433–2444PubMedGoogle Scholar
  31. 31.
    Tsui-Pierchala BA, Ahrens RC, Crowder RJ, Milbrandt J, Johnson EM Jr (2002) The long and short isoforms of Ret function as independent signaling complexes. J Biol Chem 277:34618–34625PubMedGoogle Scholar
  32. 32.
    Lee DC, Chan KW, Chan SY (2002) RET receptor tyrosine kinase isoforms in kidney function and disease. Oncogene 21:5582–5592PubMedGoogle Scholar
  33. 33.
    Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132PubMedGoogle Scholar
  34. 34.
    Trupp M, Arenas E, Fainzilber M, Nilsson AS, Sieber BA, Grigoriou M, Kilkenny C, Salazar-Grueso E, Pachnis V, Arumae U (1996) Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381:785–789PubMedGoogle Scholar
  35. 35.
    Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj-Bello A, Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE, Rosenthal A (1996) Characterization of a multicomponent receptor for GDNF. Nature 382:80–83PubMedGoogle Scholar
  36. 36.
    Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM Jr, Milbrandt J (1996) Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 384:467–470PubMedGoogle Scholar
  37. 37.
    Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, Lampe PA, Heuckeroth RO, Kotzbauer PT, Simburger KS, Golden JP, Davies JA, Vejsada R, Kato AC, Hynes M, Sherman D, Nishimura M, Wang LC, Vandlen R, Moffat B, Klein RD, Poulsen K, Gray C, Garces A, Henderson CE, Phillips HS, Johnson EM Jr (1998) Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20:245–253PubMedGoogle Scholar
  38. 38.
    Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, Leitner ML, Araki T, Johnson EM Jr, Milbrandt J (1998) Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 21:1291–1302PubMedGoogle Scholar
  39. 39.
    Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M, Tamir R, Antonio L, Hu Z, Cupples R, Louis JC, Hu S, Altrock BW, Fox GM (1996) GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85:1113–1124PubMedGoogle Scholar
  40. 40.
    Klein RD, Sherman D, Ho WH, Stone D, Bennett GL, Moffat B, Vandlen R, Simmons L, Gu Q, Hongo JA, Devaux B, Poulsen K, Armanini M, Nozaki C, Asai N, Goddard A, Phillips H, Henderson CE, Takahashi M, Rosenthal A (1997) A GPI-linked protein that interacts with Ret to form a candidate neurturin receptor. Nature 387:717–721PubMedGoogle Scholar
  41. 41.
    Buj-Bello A, Adu J, Pinon LG, Horton A, Thompson J, Rosenthal A, Chinchetru M, Buchman VL, Davies AM (1997) Neurturin responsiveness requires a GPI-linked receptor and the Ret receptor tyrosine kinase. Nature 387:721–724PubMedGoogle Scholar
  42. 42.
    Jing S, Yu Y, Fang M, Hu Z, Holst PL, Boone T, Delaney J, Schultz H, Zhou R, Fox GM (1997) GFRalpha-2 and GFRalpha-3 are two new receptors for ligands of the GDNF family. J Biol Chem 272:33111–33117PubMedGoogle Scholar
  43. 43.
    Worby CA, Vega QC, Chao HH, Seasholtz AF, Thompson RC, Dixon JE (1998) Identification and characterization of GFRalpha-3, a novel Co-receptor belonging to the glial cell line-derived neurotrophic receptor family. J Biol Chem 273:3502–3508PubMedGoogle Scholar
  44. 44.
    Thompson J, Doxakis E, Pinon LG, Strachan P, Buj-Bello A, Wyatt S, Buchman VL, Davies AM (1998) GFRalpha-4, a new GDNF family receptor. Mol Cell Neurosci 11:117–126PubMedGoogle Scholar
  45. 45.
    Enokido Y, de Sauvage F, Hongo JA, Ninkina N, Rosenthal A, Buchman VL, Davies AM (1998) GFR alpha-4 and the tyrosine kinase Ret form a functional receptor complex for persephin. Curr Biol 8:1019–1022PubMedGoogle Scholar
  46. 46.
    Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73PubMedGoogle Scholar
  47. 47.
    Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76PubMedGoogle Scholar
  48. 48.
    Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79PubMedGoogle Scholar
  49. 49.
    Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21:53–62PubMedGoogle Scholar
  50. 50.
    Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, Milbrandt J (1998) GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324PubMedGoogle Scholar
  51. 51.
    Heuckeroth RO, Enomoto H, Grider JR, Golden JP, Hanke JA, Jackman A, Molliver DC, Bardgett ME, Snider WD, Johnson EM Jr, Milbrandt J (1999) Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 22:253–263PubMedGoogle Scholar
  52. 52.
    Rossi J, Luukko K, Poteryaev D, Laurikainen A, Sun YF, Laakso T, Eerikainen S, Tuominen R, Lakso M, Rauvala H, Arumae U, Pasternack M, Saarma M, Airaksinen MS (1999) Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFR alpha2, a functional neurturin receptor. Neuron 22:243–252PubMedGoogle Scholar
  53. 53.
    Honma Y, Araki T, Gianino S, Bruce A, Heuckeroth R, Johnson E, Milbrandt J (2002) Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 35:267–282PubMedGoogle Scholar
  54. 54.
    Nishino J, Mochida K, Ohfuji Y, Shimazaki T, Meno C, Ohishi S, Matsuda Y, Fujii H, Saijoh Y, Hamada H (1999) GFR alpha3, a component of the artemin receptor, is required for migration and survival of the superior cervical ganglion. Neuron 23:725–736PubMedGoogle Scholar
  55. 55.
    Tomac AC, Agulnick AD, Haughey N, Chang CF, Zhang Y, Backman C, Morales M, Mattson MP, Wang Y, Westphal H, Hoffer BJ (2002) Effects of cerebral ischemia in mice deficient in Persephin. Proc Natl Acad Sci USA 99:9521–9526PubMedGoogle Scholar
  56. 56.
    Lindfors PH, Lindahl M, Rossi J, Saarma M, Airaksinen MS (2006) Ablation of persephin receptor glial cell line-derived neurotrophic factor family receptor alpha4 impairs thyroid calcitonin production in young mice. Endocrinology 147:2237–2244PubMedGoogle Scholar
  57. 57.
    Liu X, Vega QC, Decker RA, Pandey A, Worby CA, Dixon JE (1996) Oncogenic RET receptors display different autophosphorylation sites and substrate binding specificities. J Biol Chem 271:5309–5312PubMedGoogle Scholar
  58. 58.
    Kawamoto Y, Takeda K, Okuno Y, Yamakawa Y, Ito Y, Taguchi R, Kato M, Suzuki H, Takahashi M, Nakashima I (2004) Identification of RET autophosphorylation sites by mass spectrometry. J Biol Chem 279:14213–14224PubMedGoogle Scholar
  59. 59.
    Ichihara M, Murakumo Y, Takahashi M (2004) RET and neuroendocrine tumors. Cancer Lett 204:197–211PubMedGoogle Scholar
  60. 60.
    Kodama Y, Asai N, Kawai K, Jijiwa M, Murakumo Y, Ichihara M, Takahashi M (2005) The RET proto-oncogene: a molecular therapeutic target in thyroid cancer. Cancer Sci 96:143–148PubMedGoogle Scholar
  61. 61.
    Arighi E, Borrello MG, Sariola H (2005) RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 16:441–467PubMedGoogle Scholar
  62. 62.
    Grimm J, Sachs M, Britsch S, Di Cesare S, Schwarz-Romond T, Alitalo K, Birchmeier W (2001) Novel p62 dok family members, dok-4 and dok-5, are substrates of the c-Ret receptor tyrosine kinase and mediate neuronal differentiation. J Cell Biol 154:345–354PubMedGoogle Scholar
  63. 63.
    Uchida M, Enomoto A, Fukuda T, Kurokawa K, Maeda K, Kodama Y, Asai N, Hasegawa T, Shimono Y, Jijiwa M, Ichihara M, Murakumo Y, Takahashi M (2006) Dok-4 regulates GDNF-dependent neurite outgrowth through downstream activation of Rap1 and mitogen-activated protein kinase. J Cell Sci 119:3067–3077PubMedGoogle Scholar
  64. 64.
    Crowder RJ, Enomoto H, Yang M, Johnson EM Jr, Milbrandt J (2004) Dok-6, a Novel p62 Dok family member, promotes Ret-mediated neurite outgrowth. J Biol Chem 279:42072–42081PubMedGoogle Scholar
  65. 65.
    Jijiwa M, Fukuda T, Kawai K, Nakamura A, Kurokawa K, Murakumo Y, Ichihara M, Takahashi M (2004) A targeting mutation of tyrosine 1062 in Ret causes a marked decrease of enteric neurons and renal hypoplasia. Mol Cell Biol 24:8026–8036PubMedGoogle Scholar
  66. 66.
    Wong A, Bogni S, Kotka P, de Graaff E, D’Agati V, Costantini F, Pachnis V (2005) Phosphotyrosine 1062 is critical for the in vivo activity of the Ret9 receptor tyrosine kinase isoform. Mol Cell Biol 25:9661–9673PubMedGoogle Scholar
  67. 67.
    Encinas M, Tansey MG, Tsui-Pierchala BA, Comella JX, Milbrandt J, Johnson EM Jr (2001) c-Src is required for glial cell line-derived neurotrophic factor (GDNF) family ligand-mediated neuronal survival via a phosphatidylinositol-3 kinase (PI-3K)-dependent pathway. J Neurosci 21:1464–1472PubMedGoogle Scholar
  68. 68.
    Encinas M, Crowder RJ, Milbrandt J, Johnson EM Jr (2004) Tyrosine 981, a novel ret autophosphorylation site, binds c-Src to mediate neuronal survival. J Biol Chem 279:18262–18269.PubMedGoogle Scholar
  69. 69.
    Zhang Y, Zhu W, Wang YG, Liu XJ, Jiao L, Liu X, Zhang ZH, Lu CL, He C (2006) Interaction of SH2-Bbeta with RET is involved in signaling of GDNF-induced neurite outgrowth. J Cell Sci 119:1666–1676PubMedGoogle Scholar
  70. 70.
    Borrello MG, Alberti L, Arighi E, Bongarzone I, Battistini C, Bardelli A, Pasini B, Piutti C, Rizzetti MG, Mondellini P, Radice MT, Pierotti MA (1996) The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cgamma. Mol Cell Biol 16:2151–2163PubMedGoogle Scholar
  71. 71.
    Alberti L, Borrello MG, Ghizzoni S, Torriti F, Rizzetti MG, Pierotti MA (1998) Grb2 binding to the different isoforms of Ret tyrosine kinase. Oncogene 17:1079–1087PubMedGoogle Scholar
  72. 72.
    Fukuda T, Kiuchi K, Takahashi M (2002) Novel mechanism of regulation of Rac activity and lamellipodia formation by RET tyrosine kinase. J Biol Chem 277:19114–19121PubMedGoogle Scholar
  73. 73.
    Schuringa JJ, Wojtachnio K, Hagens W, Vellenga E, Buys CH, Hofstra R, Kruijer W (2001) MEN2A-RET-induced cellular transformation by activation of STAT3. Oncogene 20:5350–5358PubMedGoogle Scholar
  74. 74.
    Schuetz G, Rosario M, Grimm J, Boeckers TM, Gundelfinger ED, Birchmeier W (2004) The neuronal scaffold protein Shank3 mediates signaling and biological function of the receptor tyrosine kinase Ret in epithelial cells. J Cell Biol 167:945–952PubMedGoogle Scholar
  75. 75.
    Tansey MG, Baloh RH, Milbrandt J, Johnson EM Jr (2000) GFRalpha-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron 25:611–623PubMedGoogle Scholar
  76. 76.
    Paratcha G, Ledda F, Baars L, Coulpier M, Besset V, Anders J, Scott R, Ibanez CF (2001) Released GFRalpha1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts. Neuron 29:171–184PubMedGoogle Scholar
  77. 77.
    Pierchala BA, Milbrandt J, Johnson EM Jr (2006) Glial cell line-derived neurotrophic factor-dependent recruitment of Ret into lipid rafts enhances signaling by partitioning Ret from proteasome-dependent degradation. J Neurosci 26:2777–2787PubMedGoogle Scholar
  78. 78.
    Richardson DS, Lai AZ, Mulligan LM (2006) RET ligand-induced internalization and its consequences for downstream signaling. Oncogene 25:3206–3211PubMedGoogle Scholar
  79. 79.
    Eng C (1999) RET proto-oncogene in the development of human cancer. J Clin Oncol 17:380–393PubMedGoogle Scholar
  80. 80.
    Mulligan LM, Marsh DJ, Robinson BG, Schuffenecker I, Zedenius J, Lips CJ, Gagel RF, Takai SI, Noll WW, Fink M et al (1995) Genotype-phenotype correlation in multiple endocrine neoplasia type 2: report of the International RET Mutation Consortium. J Intern Med. 238:343–346PubMedGoogle Scholar
  81. 81.
    Eng C, Clayton D, Schuffenecker I, Lenoir G, Cote G, Gagel RF, van Amstel HK, Lips CJ, Nishisho I, Takai SI, Marsh DJ, Robinson BG, Frank-Raue K, Raue F, Xue F, Noll WW, Romei C, Pacini F, Fink M, Niederle B, Zedenius J, Nordenskjold M, Komminoth P, Hendy GN, Mulligan LM et al (1996) The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 276:1575–1579PubMedGoogle Scholar
  82. 82.
    Asai N, Iwashita T, Matsuyama M, Takahashi M (1995) Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol 15:1613–1619PubMedGoogle Scholar
  83. 83.
    Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, Fusco A, Vecchio G, Matoskova B, Kraus MH, Di Fiore PP (1995) Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 267:381–383PubMedGoogle Scholar
  84. 84.
    Borrello MG, Smith DP, Pasini B, Bongarzone I, Greco A, Lorenzo MJ, Arighi E, Miranda C, Eng C, Alberti L, Bocciardi R, Mondellini P, Scopsi L, Romeo G, Ponder BA, Pierotti MA (1995) RET activation by germline MEN2A and MEN2B mutations. Oncogene 11:2419–2427PubMedGoogle Scholar
  85. 85.
    Iwashita T, Asai N, Murakami H, Matsuyama M, Takahashi M (1996) Identification of tyrosine residues that are essential for transforming activity of the ret proto-oncogene with MEN2A or MEN2B mutation. Oncogene 12:481–487PubMedGoogle Scholar
  86. 86.
    Rossel M, Pasini A, Chappuis S, Geneste O, Fournier L, Schuffenecker I, Takahashi M, van Grunsven LA, Urdiales JL, Rudkin BB, Lenoir GM, Billaud M (1997) Distinct biological properties of two RET isoforms activated by MEN 2A and MEN 2B mutations. Oncogene 14:265–275PubMedGoogle Scholar
  87. 87.
    Ito S, Iwashita T, Asai N, Murakami H, Iwata Y, Sobue G, Takahashi M (1997) Biological properties of Ret with cysteine mutations correlate with multiple endocrine neoplasia type 2A, familial medullary thyroid carcinoma, and Hirschsprung’s disease phenotype. Cancer Res 57:2870–2872PubMedGoogle Scholar
  88. 88.
    Pasini A, Geneste O, Legrand P, Schlumberger M, Rossel M, Fournier L, Rudkin BB, Schuffenecker I, Lenoir GM, Billaud M (1997) Oncogenic activation of RET by two distinct FMTC mutations affecting the tyrosine kinase domain. Oncogene 15:393–402PubMedGoogle Scholar
  89. 89.
    Iwashita T, Kato M, Murakami H, Asai N, Ishiguro Y, Ito S, Iwata Y, Kawai K, Asai M, Kurokawa K, Kajita H, Takahashi M (1999) Biological and biochemical properties of Ret with kinase domain mutations identified in multiple endocrine neoplasia type 2B and familial medullary thyroid carcinoma. Oncogene 18:3919–3922PubMedGoogle Scholar
  90. 90.
    Murakami H, Iwashita T, Asai N, Shimono Y, Iwata Y, Kawai K, Takahashi M (1999) Enhanced phosphatidylinositol 3-kinase activity and high phosphorylation state of its downstream signalling molecules mediated by ret with the MEN 2B mutation. Biochem Biophys Res Commun 262:68–75PubMedGoogle Scholar
  91. 91.
    Murakami H, Yamamura Y, Shimono Y, Kawai K, Kurokawa K, Takahashi M (2002) Role of Dok1 in cell signaling mediated by RET tyrosine kinase. J Biol Chem 277:32781–32790PubMedGoogle Scholar
  92. 92.
    Marshall GM, Peaston AE, Hocker JE, Smith SA, Hansford LM, Tobias V, Norris MD, Haber M, Smith DP, Lorenzo MJ, Ponder BA, Hancock JF (1997) Expression of multiple endocrine neoplasia 2B RET in neuroblastoma cells alters cell adhesion in vitro, enhances metastatic behavior in vivo, and activates Jun kinase. Cancer Res 57:5399–5405PubMedGoogle Scholar
  93. 93.
    Songyang Z, Carraway KL 3rd, Eck MJ, Harrison SC, Feldman RA, Mohammadi M, Schlessinger J, Hubbard SR, Smith DP, Eng C, Lorenzo MJ, Ponder BA, Mayer BJ, Cantley LC (1995) Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 373:536–539PubMedGoogle Scholar
  94. 94.
    Bocciardi R, Mograbi B, Pasini B, Borrello MG, Pierotti MA, Bourget I, Fischer S, Romeo G, Rossi B (1997) The multiple endocrine neoplasia type 2B point mutation switches the specificity of the Ret tyrosine kinase towards cellular substrates that are susceptible to interact with Crk and Nck. Oncogene 15:2257–2265PubMedGoogle Scholar
  95. 95.
    Salvatore D, Melillo RM, Monaco C, Visconti R, Fenzi G, Vecchio G, Fusco A, Santoro M (2001) Increased in vivo phosphorylation of ret tyrosine 1062 is a potential pathogenetic mechanism of multiple endocrine neoplasia type 2B. Cancer Res 61:1426–1431PubMedGoogle Scholar
  96. 96.
    Mise N, Drosten M, Racek T, Tannapfel A, Putzer BM (2006) Evaluation of potential mechanisms underlying genotype-phenotype correlations in multiple endocrine neoplasia type 2. Oncogene (in press)Google Scholar
  97. 97.
    Scheid MP, Woodgett JR (2001) PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2:760–768PubMedGoogle Scholar
  98. 98.
    Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–2501PubMedGoogle Scholar
  99. 99.
    Enomoto A, Murakami H, Asai N, Morone N, Watanabe T, Kawai K, Murakumo Y, Usukura J, Kaibuchi K, Takahashi M (2005) Akt/PKB regulates actin organization and cell motility via Girdin/APE. Dev Cell 9:389–402PubMedGoogle Scholar
  100. 100.
    Watanabe T, Ichihara M, Hashimoto M, Shimono K, Shimoyama Y, Nagasaka T, Murakumo Y, Murakami H, Sugiura H, Iwata H, Ishiguro N, Takahashi M (2002) Characterization of gene expression induced by RET with MEN2A or MEN2B mutation. Am J Pathol 161:249–256PubMedGoogle Scholar
  101. 101.
    Jain S, Watson MA, DeBenedetti MK, Hiraki Y, Moley JF, Milbrandt J (2004) Expression profiles provide insights into early malignant potential and skeletal abnormalities in multiple endocrine neoplasia type 2B syndrome tumors. Cancer Res 64:3907–3913PubMedGoogle Scholar
  102. 102.
    Nilsson O, Tisell LE, Jansson S, Ahlman H, Gimm O, Eng C (1999) Adrenal and extra-adrenal pheochromocytomas in a family with germline RET V804L mutation. JAMA 281:1587–1588PubMedGoogle Scholar
  103. 103.
    Gimm O, Niederle BE, Weber T, Bockhorn M, Ukkat J, Brauckhoff M, Thanh PN, Frilling A, Klar E, Niederle B, Dralle H (2002) RET proto-oncogene mutations affecting codon 790/791: A mild form of multiple endocrine neoplasia type 2A syndrome? Surgery 132:952–959PubMedGoogle Scholar
  104. 104.
    Dvorakova S, Vaclavikova E, Duskova J, Vlcek P, Ryska A, Bendlova B (2005) Exon 5 of the RET proto-oncogene: a newly detected risk exon for familial medullary thyroid carcinoma, a novel germ-line mutation Gly321Arg. J Endocrinol Invest 28:905–909PubMedGoogle Scholar
  105. 105.
    Bae SJ, Kim DJ, Kim JY, Park SY, Choi SH, Song YD, Ki CS, Chung JH (2006) A Rare Extracellular D631Y Germl ine Mutation of the RET Proto-Oncogene in Two Korean Families with Multiple Endocrine Neoplasia 2A. Thyroid 16:609–614PubMedGoogle Scholar
  106. 106.
    de Groot JW, Links TP, Plukker JT, Lips CJ, Hofstra RM (2006) RET as a Diagnostic and Therapeutic Target in Sporadic and Hereditary Endocrine Tumors. Endocr Rev (in press)Google Scholar
  107. 107.
    Jindrichova S, Kodet R, Krskova L, Vlcek P, Bendlova B (2003) The newly detected mutations in the RET proto-oncogene in exon 16 as a cause of sporadic medullary thyroid carcinoma. J Mol Med 81:819–823PubMedGoogle Scholar
  108. 108.
    Goodfellow PJ, Wells SA Jr (1995) RET gene and its implications for cancer. J Natl Cancer Inst 87:1515–1523PubMedGoogle Scholar
  109. 109.
    Sherman SI (2003) Thyroid carcinoma. Lancet 361:501–511PubMedGoogle Scholar
  110. 110.
    Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, Pasini B, Hoppener JW, van Amstel HK, Romeo G, Lips CJ, Buys CH (1994) A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367:375–376PubMedGoogle Scholar
  111. 111.
    Eng C, Smith DP, Mulligan LM, Nagai MA, Healey CS, Ponder MA, Gardner E, Scheumann GF, Jackson CE, Tunnacliffe A, Ponder BA (1994) Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum Mol Genet 3:237–241PubMedGoogle Scholar
  112. 112.
    Eng C, Mulligan LM, Smith DP, Healey CS, Frilling A, Raue F, Neumann HP, Pfragner R, Behmel A, Lorenzo MJ et al (1995) Mutation of the RET protooncogene in sporadic medullary thyroid carcinoma. Genes Chromosomes Cancer 12:209–212PubMedGoogle Scholar
  113. 113.
    Marsh DJ, Learoyd DL, Andrew SD, Krishnan L, Pojer R, Richardson AL, Delbridge L, Eng C, Robinson BG (1996) Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinoma. Clin Endocrinol (Oxf) 44:249–257Google Scholar
  114. 114.
    Romei C, Elisei R, Pinchera A, Ceccherini I, Molinaro E, Mancusi F, Martino E, Romeo G, Pacini F (1996) Somatic mutations of the ret protooncogene in sporadic medullary thyroid carcinoma are not restricted to exon 16 and are associated with tumor recurrence. J Clin Endocrinol Metab 81:1619–1622PubMedGoogle Scholar
  115. 115.
    Uchino S, Noguchi S, Yamashita H, Sato M, Adachi M, Yamashita H, Watanabe S, Ohshima A, Mitsuyama S, Iwashita T, Takahashi M (1999) Somatic mutations in RET exons 12 and 15 in sporadic medullary thyroid carcinomas: different spectrum of mutations in sporadic type from hereditary type. Jpn J Cancer Res 90:1231–1237PubMedGoogle Scholar
  116. 116.
    Jindrichova S, Kodet R, Krskova L, Vlcek P, Bendlova B (2003) The newly detected mutations in the RET proto-oncogene in exon 16 as a cause of sporadic medullary thyroid carcinoma. J Mol Med 81:819–823PubMedGoogle Scholar
  117. 117.
    Dvorakova S, Vaclavikova E, Sykorova V, Duskova J, Vlcek P, Ryska A, Novak Z, Bendlova B (2006) New multiple somatic mutations in the RET proto-oncogene associated with a sporadic medullary thyroid carcinoma. Thyroid 16:311–316PubMedGoogle Scholar
  118. 118.
    Zedenius J, Larsson C, Bergholm U, Bovee J, Svensson A, Hallengren B, Grimelius L, Backdahl M, Weber G, Wallin G (1995) Mutations of codon 918 in the RET proto-oncogene correlate to poor prognosis in sporadic medullary thyroid carcinomas. J Clin Endocrinol Metab 80:3088–3090PubMedGoogle Scholar
  119. 119.
    Zedenius J, Wallin G, Hamberger B, Nordenskjold M, Weber G, Larsson C (1994) Somatic and MEN 2A de novo mutations identified in the RET proto-oncogene by screening of sporadic MTC:s. Hum Mol Genet 3:1259–1262PubMedGoogle Scholar
  120. 120.
    Komminoth P, Kunz EK, Matias-Guiu X, Hiort O, Christiansen G, Colomer A, Roth J, Heitz PU (1995) Analysis of RET protooncogene point mutations distinguishes heritable from nonheritable medullary thyroid carcinomas. Cancer 76:479–489PubMedGoogle Scholar
  121. 121.
    Scurini C, Quadro L, Fattoruso O, Verga U, Libroia A, Lupoli G, Cascone E, Marzano L, Paracchi S, Busnardo B, Girelli ME, Bellastella A, Colantuoni V (1998) Germline and somatic mutations of the RET proto-oncogene in apparently sporadic medullary thyroid carcinomas. Mol Cell Endocrinol 137:51–57PubMedGoogle Scholar
  122. 122.
    Shirahama S, Ogura K, Takami H, Ito K, Tohsen T, Miyauchi A, Nakamura Y (1998) Mutational analysis of the RET proto-oncogene in 71 Japanese patients with medullary thyroid carcinoma. J Hum Genet 43:101–106PubMedGoogle Scholar
  123. 123.
    Huang CN, Wu SL, Chang TC, Huang SH, Chang TJ (1998) RET protooncogene mutations in patients with apparently sporadic medullary thyroid carcinoma. J Formos Med Assoc 97:541–546PubMedGoogle Scholar
  124. 124.
    Koper JW, Lamberts SW (2000) Sporadic endocrine tumours and their relationship to the hereditary endocrine neoplasia syndromes. Eur J Clin Invest 30:493–500PubMedGoogle Scholar
  125. 125.
    Wiench M, Wygoda Z, Gubala E, Wloch J, Lisowska K, Krassowski J, Scieglinska D, Fiszer-Kierzkowska A, Lange D, Kula D, Zeman M, Roskosz J, Kukulska A, Krawczyk Z, Jarzab B (2001) Estimation of risk of inherited medullary thyroid carcinoma in apparent sporadic patients. J Clin Oncol 19:1374–1380PubMedGoogle Scholar
  126. 126.
    Pacak K, Linehan WM, Eisenhofer G, Walther MM, Goldstein DS (2001) Recent advances in genetics, diagnosis, localization, and treatment of pheochromocytoma. Ann Intern Med 134:315–329PubMedGoogle Scholar
  127. 127.
    Neumann HP, Bausch B, McWhinney SR, Bender BU, Gimm O, Franke G, Schipper J, Klisch J, Altehoefer C, Zerres K, Januszewicz A, Eng C, Smith WM, Munk R, Manz T, Glaesker S, Apel TW, Treier M, Reineke M, Walz MK, Hoang-Vu C, Brauckhoff M, Klein-Franke A, Klose P, Schmidt H, Maier-Woelfle M, Peczkowska M, Szmigielski C, Eng C; Freiburg-Warsaw-Columbus Pheochromocytoma Study Group (2002) Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 346:1459–1466PubMedGoogle Scholar
  128. 128.
    Bryant J, Farmer J, Kessler LJ, Townsend RR, Nathanson KL (2003) Pheochromocytoma: the expanding genetic differential diagnosis. J Natl Cancer Inst 95:1196–1204PubMedGoogle Scholar
  129. 129.
    Lenders JW, Eisenhofer G, Mannelli M, Pacak K (2005) Phaeochromocytoma. Lancet 366:665–675PubMedGoogle Scholar
  130. 130.
    Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, Van Der Mey A, Taschner PE, Rubinstein WS, Myers EN, Richard CW 3rd, Cornelisse CJ, Devilee P, Devlin B (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851PubMedGoogle Scholar
  131. 131.
    Niemann S, Muller U (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26:268–270PubMedGoogle Scholar
  132. 132.
    Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, Skoldberg F, Husebye ES, Eng C, Maher ER (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69:49–54PubMedGoogle Scholar
  133. 133.
    Beldjord C, Desclaux-Arramond F, Raffin-Sanson M, Corvol JC, De Keyzer Y, Luton JP, Plouin PF, Bertagna X (1995) The RET protooncogene in sporadic pheochromocytomas: frequent MEN 2-like mutations and new molecular defects. J Clin Endocrinol Metab 80:2063–2068PubMedGoogle Scholar
  134. 134.
    Lindor NM, Honchel R, Khosla S, Thibodeau SN (1995) Mutations in the RET protooncogene in sporadic pheochromocytomas. J Clin Endocrinol Metab 80:627–629PubMedGoogle Scholar
  135. 135.
    Yoshimoto K, Tanaka C, Hamaguchi S, Kimura T, Iwahana H, Miyauchi A, Itakura M (1995) Tumor-specific mutations in the tyrosine kinase domain of the RET proto-oncogene in pheochromocytomas of sporadic type. Endocr J 42:265–270PubMedGoogle Scholar
  136. 136.
    Kondo T, Ezzat S, Asa SL (2006) Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6:292–306PubMedGoogle Scholar
  137. 137.
    Pierotti MA, Bongarzone I, Borello MG, Greco A, Pilotti S, Sozzi G (1996) Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells. Genes Chromosomes Cancer 16:1–14PubMedGoogle Scholar
  138. 138.
    Jhiang SM (2000) The RET proto-oncogene in human cancers. Oncogene 19:5590–5597PubMedGoogle Scholar
  139. 139.
    Tallini G, Asa SL (2001) RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol 8:345–354PubMedGoogle Scholar
  140. 140.
    Tallini G, Santoro M, Helie M, Carlomagno F, Salvatore G, Chiappetta G, Carcangiu ML, Fusco A (1998) RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res 4:287–294PubMedGoogle Scholar
  141. 141.
    Sugg SL, Ezzat S, Zheng L, Freeman JL, Rosen IB, Asa SL (1999) Oncogene profile of papillary thyroid carcinoma. Surgery 125:46–52PubMedGoogle Scholar
  142. 142.
    Musholt TJ, Musholt PB, Khaladj N, Schulz D, Scheumann GF, Klempnauer J (2000) Prognostic significance of RET and NTRK1 rearrangements in sporadic papillary thyroid carcinoma. Surgery 128:984–993PubMedGoogle Scholar
  143. 143.
    Nakazawa T, Kondo T, Kobayashi Y, Takamura N, Murata S, Kameyama K, Muramatsu A, Ito K, Kobayashi M, Katoh R (2005) RET gene rearrangements (RET/PTC1 and RET/PTC3) in papillary thyroid carcinomas from an iodine-rich country (Japan). Cancer 104:943–951PubMedGoogle Scholar
  144. 144.
    Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457PubMedGoogle Scholar
  145. 145.
    Xu X, Quiros RM, Gattuso P, Ain KB, Prinz RA (2003) High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res 63:4561–4567PubMedGoogle Scholar
  146. 146.
    Puxeddu E, Moretti S, Elisei R, Romei C, Pascucci R, Martinelli M, Marino C, Avenia N, Rossi ED, Fadda G, Cavaliere A, Ribacchi R, Falorni A, Pontecorvi A, Pacini F, Pinchera A, Santeusanio F (2004) BRAF(V599E) mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J Clin Endocrinol Metab 89:2414–2420PubMedGoogle Scholar
  147. 147.
    Xing M (2005) BRAF mutation in thyroid cancer. Endocr Relat Cancer 12:245–262PubMedGoogle Scholar
  148. 148.
    Melillo RM, Castellone MD, Guarino V, De Falco V, Cirafici AM, Salvatore G, Caiazzo F, Basolo F, Giannini R, Kruhoffer M, Orntoft T, Fusco A, Santoro M (2005) The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest 115:1068–1081PubMedGoogle Scholar
  149. 149.
    Mitsutake N, Miyagishi M, Mitsutake S, Akeno N, Mesa C Jr, Knauf JA, Zhang L, Taira K, Fagin JA (2006) BRAF mediates RET/PTC-induced mitogen-activated protein kinase activation in thyroid cells: functional support for requirement of the RET/PTC-RAS-BRAF pathway in papillary thyroid carcinogenesis. Endocrinology 147:1014–1019PubMedGoogle Scholar
  150. 150.
    Lips CJ (1998) Clinical management of the multiple endocrine neoplasia syndromes: results of a computerized opinion poll at the Sixth International Workshop on Multiple Endocrine Neoplasia and von Hippel-Lindau disease. J Intern Med 243:589–594PubMedGoogle Scholar
  151. 151.
    Berndt I, Reuter M, Saller B, Frank-Raue K, Groth P, Grussendorf M, Raue F, Ritter MM, Hoppner W (1998) A new hot spot for mutations in the ret protooncogene causing familial medullary thyroid carcinoma and multiple endocrine neoplasia type 2A. J Clin Endocrinol Metab 83:770–774PubMedGoogle Scholar
  152. 152.
    Niccoli-Sire P, Murat A, Rohmer V, Franc S, Chabrier G, Baldet L, Maes B, Savagner F, Giraud S, Bezieau S, Kottler ML, Morange S, Conte-Devolx B; French Calcitonin Tumors Group (GETC) (2001) Familial medullary thyroid carcinoma with noncysteine ret mutations: phenotype-genotype relationship in a large series of patients. J Clin Endocrinol Metab 86:3746–3753PubMedGoogle Scholar
  153. 153.
    Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C, Conte-Devolx B, Falchetti A, Gheri RG, Libroia A, Lips CJ, Lombardi G, Mannelli M, Pacini F, Ponder BA, Raue F, Skogseid B, Tamburrano G, Thakker RV, Thompson NW, Tomassetti P, Tonelli F, Wells SA Jr, Marx SJ (2001) Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab 86:5658–5671PubMedGoogle Scholar
  154. 154.
    Skinner MA, Moley JA, Dilley WG, Owzar K, Debenedetti MK, Wells SA Jr (2005) Prophylactic thyroidectomy in multiple endocrine neoplasia type 2A. N Engl J Med 353:1105–1113PubMedGoogle Scholar
  155. 155.
    Learoyd DL, Gosnell J, Elston MS, Saurine TJ, Richardson AL, Delbridge LW, Aglen JV, Robinson BG (2005) Experience of prophylactic thyroidectomy in multiple endocrine neoplasia type 2A kindreds with RET codon 804 mutations. Clin Endocrinol (Oxf) 63:636–641Google Scholar
  156. 156.
    Heizmann O, Haecker FM, Zumsteg U, Muller B, Oberholzer M, Oertli D (2006) Presymptomatic thyroidectomy in multiple endocrine neoplasia 2a. Eur J Surg Oncol 32:98–102PubMedGoogle Scholar
  157. 157.
    Gosnell JE, Sywak MS, Sidhu SB, Gough IR, Learoyd DL, Robinson BG, Delbridge LW (2006) New era: prophylactic surgery for patients with multiple endocrine neoplasia-2a. ANZ J Surg 76:586–590PubMedGoogle Scholar
  158. 158.
    Piolat C, Dyon JF, Sturm N, Pinson S, Bost M, Jouk PS, Plantaz D, Chabre O (2006) Very early prophylactic thyroid surgery for infants with a mutation of the RET proto-oncogene at codon 634: evaluation of the implementation of international guidelines for MEN type 2 in a single centre. Clin Endocrinol (Oxf) 65:118–124Google Scholar
  159. 159.
    Frank-Raue K, Buhr H, Dralle H, Klar E, Senninger N, Weber T, Rondot S, Hoppner W, Raue F (2006) Long-term outcome in 46 gene carriers of hereditary medullary thyroid carcinoma after prophylactic thyroidectomy: impact of individual RET genotype. Eur J Endocrinol 155:229–236PubMedGoogle Scholar
  160. 160.
    Schuffenecker I, Virally-Monod M, Brohet R, Goldgar D, Conte-Devolx B, Leclerc L, Chabre O, Boneu A, Caron J, Houdent C, Modigliani E, Rohmer V, Schlumberger M, Eng C, Guillausseau PJ, Lenoir GM (1998) Risk and penetrance of primary hyperparathyroidism in multiple endocrine neoplasia type 2A families with mutations at codon 634 of the RET proto-oncogene. Groupe D’etude des Tumeurs a Calcitonine. J Clin Endocrinol Metab 83:487–491PubMedGoogle Scholar
  161. 161.
    O’Riordain DS, O’Brien T, Grant CS, Weaver A, Gharib H, van Heerden JA (1993) Surgical management of primary hyperparathyroidism in multiple endocrine neoplasia types 1 and 2. Surgery 114:1031–1037PubMedGoogle Scholar
  162. 162.
    Raue F, Kraimps JL, Dralle H, Cougard P, Proye C, Frilling A, Limbert E, Llenas LF, Niederle B (1995) Primary hyperparathyroidism in multiple endocrine neoplasia type 2A. J Intern Med 238:369–373PubMedGoogle Scholar
  163. 163.
    Wu LT, Averbuch SD, Ball DW, de Bustros A, Baylin SB, McGuire WP 3rd (1994) Treatment of advanced medullary thyroid carcinoma with a combination of cyclophosphamide, vincristine, and dacarbazine. Cancer 73:432–436PubMedGoogle Scholar
  164. 164.
    Nocera M, Baudin E, Pellegriti G, Cailleux AF, Mechelany-Corone C, Schlumberger M (2000) Treatment of advanced medullary thyroid cancer with an alternating combination of doxorubicin-streptozocin and 5 FU-dacarbazine. Groupe d’Etude des Tumeurs a Calcitonine (GETC). Br J Cancer 83:715–718PubMedGoogle Scholar
  165. 165.
    Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289:1938–1942PubMedGoogle Scholar
  166. 166.
    Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ (2000) Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96:925–932PubMedGoogle Scholar
  167. 167.
    Cohen MS, Hussain HB, Moley JF (2002) Inhibition of medullary thyroid carcinoma cell proliferation and RET phosphorylation by tyrosine kinase inhibitors. Surgery 132:960–966PubMedGoogle Scholar
  168. 168.
    de Groot JW, Plaza Menacho I, Schepers H, Drenth-Diephuis LJ, Osinga J, Plukker JT, Links TP, Eggen BJ, Hofstra RM (2006) Cellular effects of imatinib on medullary thyroid cancer cells harboring multiple endocrine neoplasia Type 2A and 2B associated RET mutations. Surgery 139:806–814PubMedGoogle Scholar
  169. 169.
    Atkins M, Jones CA, Kirkpatrick P (2006) Sunitinib maleate. Nat Rev Drug Discov 5:279–280PubMedGoogle Scholar
  170. 170.
    Kim DW, Jo YS, Jung HS, Chung HK, Song JH, Park KC, Park SH, Hwang JH, Rha SY, Kweon GR, Lee SJ, Jo KW, Shong M (2006) An orally administered multi-target tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/PTC kinases. J Clin Endocrinol Metab (in press)Google Scholar
  171. 171.
    Carlomagno F, Anaganti S, Guida T, Salvatore G, Troncone G, Wilhelm SM, Santoro M (2006) BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 98:326–334PubMedGoogle Scholar
  172. 172.
    Carlomagno F, Vitagliano D, Guida T, Ciardiello F, Tortora G, Vecchio G, Ryan AJ, Fontanini G, Fusco A, Santoro M (2002) ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res 62:7284–7290PubMedGoogle Scholar
  173. 173.
    Carlomagno F, Santoro M (2004) Identification of RET kinase inhibitors as potential new treatment for sporadic and inherited thyroid cancer. J Chemother 16(Suppl 4):49–51PubMedGoogle Scholar
  174. 174.
    Cuccuru G, Lanzi C, Cassinelli G, Pratesi G, Tortoreto M, Petrangolini G, Seregni E, Martinetti A, Laccabue D, Zanchi C, Zunino F (2004) Cellular effects and antitumor activity of RET inhibitor RPI-1 on MEN2A-associated medullary thyroid carcinoma. J Natl Cancer Inst 96:1006–1014PubMedGoogle Scholar
  175. 175.
    Petrangolini G, Cuccuru G, Lanzi C, Tortoreto M, Belluco S, Pratesi G, Cassinelli G, Zunino F (2006) Apoptotic cell death induction and angiogenesis inhibition in large established medullary thyroid carcinoma xenografts by Ret inhibitor RPI-1. Biochem Pharmacol 72:405–414PubMedGoogle Scholar
  176. 176.
    Carlomagno F, Vitagliano D, Guida T, Napolitano M, Vecchio G, Fusco A, Gazit A, Levitzki A, Santoro M (2002) The kinase inhibitor PP1 blocks tumorigenesis induced by RET oncogenes. Cancer Res 62:1077–1082PubMedGoogle Scholar
  177. 177.
    Carlomagno F, Vitagliano D, Guida T, Basolo F, Castellone MD, Melillo RM, Fusco A, Santoro M (2003) Efficient inhibition of RET/papillary thyroid carcinoma oncogenic kinases by 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). J Clin Endocrinol Metab 88:1897–1902PubMedGoogle Scholar
  178. 178.
    Strock CJ, Park JI, Rosen M, Dionne C, Ruggeri B, Jones-Bolin S, Denmeade SR, Ball DW, Nelkin BD (2003) CEP-701 and CEP-751 inhibit constitutively activated RET tyrosine kinase activity and block medullary thyroid carcinoma cell growth. Cancer Res 63:5559–5563PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Yoshiki Murakumo
    • 1
  • Mayumi Jijiwa
    • 1
  • Naoya Asai
    • 1
  • Masatoshi Ichihara
    • 1
  • Masahide Takahashi
    • 1
    • 2
  1. 1.Department of PathologyNagoya University Graduate School of MedicineShowa-kuJapan
  2. 2.Division of Molecular Pathology, Center for Neurological Disease and CancerNagoya University Graduate School of MedicineShowa-kuJapan

Personalised recommendations