Thiol-trapping natural products under the lens of the cysteamine assay: friends, foes, or simply alternatively reversible ligands?

Abstract

The literature on thia-Michael acceptors is vast and can be cherry-picked to show either that these compounds pollute chemical libraries displaying unselective binding and propensity to toxicity, or, alternatively, that the thiol-trapping reaction is highly selective and critical for bioactivity. Since the energy of the carbon–sulfur bond (ca 60 kcal/mole) is similar to the one of the π-component of a carbon–carbon double bond, all thia-Michael additions are, in principle, reversible, and basically thermodynamically driven by the difference in energy between an S–H and a C–H bond. However, the rate of the backward reaction can vary dramatically, depending on mesomeric effects, strain, and steric considerations that can substantially lower the kinetic barrier to the forward and backward reactions, while the position of the equilibrium is strongly affected by steric effects. As a result, a pulsed, transient binding reminiscent of a non-covalent interaction can take place. We describe how an NMR assay to identify transient Michael acceptors was serendipitously discovered during an investigation on the migraine-inducing toxic constituents of the headache tree [Umbellularia californica (Hook. & Arn.) Nutt.], and summarize how the assay can also be used to locate thia-Michael acceptor sites in complex natural products, to comparatively evaluate thiol affinity in multi-electrophilic compounds, and to rate mixtures of acceptors according to their reactivity with thiol groups.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Appendino G, Minassi A, Collado JA, Pollastro F, Chianese G, Taglialatela-Scafati O, Ayyari M, Garcia V, Muñoz E (2015) The thia-michael reactivity of zerumbone and related cross-conjugated dienones: disentangling stoichiometry, regiochemistry, and addition mode with an NMR-spectroscopy-based cysteamine assay. Eur J Org Chem 2015:3721–3726

    CAS  Google Scholar 

  2. Arsovska E, Trontelj J, Zidar N, Tihomir M, Lucija P, Kikelj D, Plavanec J, Zega A (2014) Evaluation of Michael-type acceptor reactivity of 5-benzylidenebarbiturates, 5-benzylidenerhodanines, and related heterocycles using NMR. Acta Chim Sloven 61:637–644

    CAS  Google Scholar 

  3. Autelitano A, Minassi A, Pagani A, Taglialatela-Scafati O, Appendino G (2017) The reaction of cinnamaldehyde and cinnam(o)yl derivatives with thiols. Acta Pharm Sin B 7:523–526

    PubMed  PubMed Central  Google Scholar 

  4. Avonto C, Taglialatela-Scafati O, Pollastro F, Minassi A, Di Marzo V, De Petrocellis L, Appendino G (2011) An NMR spectroscopic method to identify and classify thiol-trapping agents: revival of Michael acceptors for drug discovery? Angew Chem Int Ed Engl 50:467–471

    CAS  PubMed  Google Scholar 

  5. Avonto C, Chittiboyina AG, Rua D, Khan IA (2015) A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers. Toxicol Appl Pharmacol 289:177–184

    CAS  PubMed  Google Scholar 

  6. Baecksröm P, Jacobbson U, Koutek B, Norin T (1985) Photochemical transformation of protonated phenols. A one-step synthesis of umbellulone from thymol. J Org Chem 50:3728–3732

    Google Scholar 

  7. Baell JB (2016) Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). J Nat Prod 79:616–628

    CAS  PubMed  Google Scholar 

  8. Baell JB (2017) Seven year itch. Pan-assay interference compounds (PAINS) in 2017—utility and limitations. ACS Chem Biol 13:36–44

    PubMed  PubMed Central  Google Scholar 

  9. Baell JB, Holloway GA (2014) Chemical con artists foil drug discovery. Nature 513:481–484

    CAS  PubMed  Google Scholar 

  10. Benemei S, Appendino G, Geppetti P (2010) Pleasant natural scent with unpleasant effects: cluster headache-like attacks triggered by Umbellularia californica. Cephalalgia 30:744–746

    CAS  PubMed  Google Scholar 

  11. Capuzzi SJ, Muratov E, Tropsha A (2017) Phantom PAINS: problems with the utility of alerts for Pan-Assay Interference Compounds. J Chem Inf Model 57:417–427

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Castro-Falcón G, Hahn D, Reimer D, Hughes CC (2016) Thiol probes to detect electrophilic natural products based on their mechanism of action. ACS Chem Biol 11:2328–2336

    PubMed  PubMed Central  Google Scholar 

  13. Castro-Falcón G, Seiler G, Demir O, Rathinaswamy M, Hamelin D, Hoffmann RM, Makowski S, Letzel A-C, Field S, Burke J, Amaro RE, Hughes CC (2018) Neolymphostin A is a covalent phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitor that employs an unusual electrophilic vinylogous ester. J Med Chem 61:10463–10472

    PubMed  PubMed Central  Google Scholar 

  14. Chestnut VK (1902) Plants used by the Indians of Mendocino County, California. Government Printing Office. p 408 (Reprinted in 1974 by Mendocino County Historical Society. p 114)

  15. Cox CL, Tietz JI, Sokolowski K, Melby JO, Doroghazi JR, Mitchell DA (2014) Nucleophilic 1,4-additions for natural product discovery. ACS Chem Biol 4:2014–2022

    Google Scholar 

  16. Czyzewska MM, Chrobok L, Kania A, Jatczak M, Pollastro F, Appendino G, Mozrzymas JW (2014) Dietary acetylenic oxylipin falcarinol differentially modulates GABAA receptors. J Nat Prod 77:2671–2677

    CAS  PubMed  Google Scholar 

  17. Del Prete D, Taglialatela-Scafati O, Minassi A, Sirignano C, Cruz C, Bellido ML, Muñoz E (2017) Appendino G Electrophilic triterpenoid enones: a comparative thiol-trapping and bioactivity study. J Nat Prod 80:2276–2283

    PubMed  Google Scholar 

  18. Doyle AA, Stephens JC (2019) A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 139:104405

    PubMed  Google Scholar 

  19. Eastman RH (1954) Conjugative effects of cyclopropane rings. I. Synthesis and properties of 1-methyl-4-isopropyltricyclo [4,1,0 l,6,02,4]heptanon-5. J Am Chem Soc 76:4115–4117

    CAS  Google Scholar 

  20. Edelmayer RM, Le LN, Yan J, Wei X, Nassini R, Materazzi S, Preti D, Appendino G, Geppetti P, Dodick DW, Vanderah TW, Porreca F, Dussor G (2012) Activation of TRPA1 on dural afferents: a potential mechanism of headache pain. Pain 153:1949–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fleming I (2009) Molecular orbitals and organic chemical reactions. Wiley, Chichester

    Google Scholar 

  22. Formisano C, Sanna C, Ballero M, Chianese G, Girignano C, Rigano D, Millan E, Munoz E, Taglialatela-Scafati O (2017) Anti-inflammatory sesquiterpene lactones from Onopordum Illyricum (Asteraceae), an Italian medicinal plant. Fitoterapia 116:61–65

    CAS  PubMed  Google Scholar 

  23. Gehringer M, Laufer SA (2019) Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J Med Chem 62:5673–5724

    CAS  PubMed  Google Scholar 

  24. Gilbert E, Gütschow M, Bajorath J (2018) X-ray structures of target-ligand complexes containing compounds with assay interference potential. J Med Chem 61:1276–1284

    Google Scholar 

  25. Gómez I, Olivella S, Reguero M, Riera A, Solé A (2002) Thermal and photochemical rearrangement of bicyclo[3.1.0]hex-3-en-2-one to the ketonic tautomer of phenol. Computational evidence for the formation of a diradical rather than a zwitterionic intermediate. J Am Chem Soc 124:15375–15384

    PubMed  Google Scholar 

  26. Griner EM, Kazanietz MG (2007) Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7:281–294

    CAS  PubMed  Google Scholar 

  27. Gupta P, Sharma U, Schultz TC, Sherrer E, McLean AB, Robins AJ, West LM (2011) Bioactive diterpenoid containing a reversible “pring-loaded” (E, Z)-dieneone Michael acceptor. Org Lett 13:3920–3923

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang W, Wu X, Gao X, Yu Y, Lei H, Zhu Z, Shi Y, Chen Y, Qin M, Wang W, Cao Y (2019) Maleimide-thiol adducts stabilized through stretching. Nat Chem 11:310–319

    CAS  PubMed  Google Scholar 

  29. Ishikawa T, Akimaru K, Nakanishi M, Tomokiyo K, Furuta K, Suzuki M, Noyori R (1998) Anti-cancer-prostaglandin-induced cell-cycle arrest and its modulation by an inhibitor of the ATP-dependent glutathione S-conjugate export pump (GS-X pump). Biochem J 336:569–576

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jackson PA, Widen JC, Harki DA, Brummond KM (2017) Covalent modifiers: a chemical perspective on the reactivity of α, β-unsaturated carbonyls with thiols via hetero-Michael addition reactions. J Med Chem 60:839–885

    CAS  PubMed  Google Scholar 

  31. Johansson MH (2012) Reversible Michael additions: covalent inhibitors and prodrugs. Mini-Rev Med Chem 12:1330–1344

    CAS  PubMed  Google Scholar 

  32. Kaschula CH, Hunter R, Hassan HT, Stellenboom N, Cotton J, Zhai XQ, Parker MI (2011) Anti-proliferation activity of synthetic ajoene analogues on cancer cell-lines. Anticancer Agents Med Chem 11:260–266

    CAS  PubMed  Google Scholar 

  33. Koyama A, Fukuda M, Sugiyama S, Yamakoshi H, Kanoh N, Ishioka C, Shibata H, Iwabuchi Y (2016) Reversibility of the thia-Michael reaction of cytotoxic C5-curcuminoid and structure-activity relationship of bis-thiol-adducts thereof. Org Biomol Chem 14:10683–10687

    Google Scholar 

  34. Krenske EH, Petter RC, Houk KN (2016) Kinetics and thermodynamics of reversible thiol additions to mono- and deactivated Michael acceptors: implications for the design of drugs that bind covalently to cysteines. J Org Chem 81:11726–11733

    CAS  PubMed  Google Scholar 

  35. Lovering EG, Laidler KJ (1968) A system of molecular thermochemistry for organic gases and liquids: part II. Extension to compounds containinig sulfur and oxygen. Can J Chem 38:2367–2372

    Google Scholar 

  36. Luiss PB, Boegling WE, Schneider C (2018) Thiol reactivity of curcumin and its oxidation products. Chem Res Toxicol 31:269–276

    Google Scholar 

  37. Lukesh JC III, Palte MJ, Raines RT (2012) A potent, versatile, disulfide-reducing agent from aspartic acid. J Am Chem Soc 134:4057–4059

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Marchesi F, Turriziani M, Tortorelli G, Avvisati G, Torino F, De Vecchis L (2007) Triazene compounds: mechanism of action and related DNA repair systems. Pharmacol Res 56:275–287

    CAS  PubMed  Google Scholar 

  39. Marino SM, Gladyshev VN (2012) Analysis and functional prediction of reactive cysteine residues. J Biol Chem 287:4419–4425

    CAS  PubMed  Google Scholar 

  40. Miklossy G, Youn UJ, Yue P, Zhang M, Chen C-H, Hillard TS, Paladino D, Li Y, Choi J, Sarkaria JN et al (2015) Hirsutinolide series inhibit Stat3 activity, alter GCN1, MAP1B, Hsp 105, G6PD, Vimentin, TrhR1, and important α-2 expression, and induce antitumor effects against human glioma. J Med Chem 58:7734–7748

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Miles CO, Sandvik M, Nonga HE, Rundberget T, Wilkins AL, Rise F, Ballot A (2012) Thiol derivatization for LC-MS identification of microcystins in complex matrices. Environ Sci Technol 46:8937–8944

    CAS  PubMed  Google Scholar 

  42. Miles CO, Sandvik M, Haande S, Nonga H, Ballot A (2013) LC-MS analysis with thiol derivatization to differentiate [Dhb 7]- from [Mdha7]-microcystins: analysis of cyanobacterial blooms, planktothrix cultures and European crayfish from Lake Steinsfjorden, Norway. Environ Sci Technol 47:4080–4087

    CAS  PubMed  Google Scholar 

  43. Minassi A, Sánchez-Duffhues G, Collado JA, Muñoz E, Appendino G (2013) Dissecting the pharmacophore of curcumin. Which structural element is critical for which action? J Nat Prod 76:1105–1112

    CAS  PubMed  Google Scholar 

  44. Mloston G, Capperucci A, Tanini D, Hamera-Faldyga R, Heimgartner H (2017) Dialkyl dicyanofumarates as oxidizing reagents for the conversion of thiols into disulfides and selenols into diselenides. Eur J Org Chem 2017:6831–6839

    CAS  Google Scholar 

  45. Nassini R, Materazzi S, Vriens J, Prenen J, Benemei S, De Siena G, la Marca G, Andrè E, Preti D, Avonto C, Sadofsky L, Di Marzo V, De Petrocellis L, Dussor G, Porreca F, Taglialatela-Scafati O, Appendino G, Nilius B, Geppetti P (2012) The ‘headache tree’ via umbellulone and TRPA1 activates the trigeminovascular system. Brain 135:376–390

    PubMed  Google Scholar 

  46. Newton AC, Brognard J (2017) Reversing the paradigm: protein kinase C as a tumore suppressor. Trends Pharmacol Sci 38:438–447

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 464:425–458

    CAS  PubMed  Google Scholar 

  48. Paulsen E, Christensen LP, Andersen KE (2010) Dermatitis from common ivy (Hedera helix L. subsp. helix) in Europe: past, present, and future. Contact Dermat 62:201–209

    CAS  Google Scholar 

  49. Reimer D, Hughes CC (2017) Thiol-based probe for electrophilic natural products reveals that most of the ammosamides are artifacts. J Nat Prod 80:126–133

    CAS  PubMed  Google Scholar 

  50. Rudolf GC, Koch MF, Mandl FAM, Sieber SA (2015) Subclass-specific labeling of protein-reactive natural products with customized nucleophilic probes. Chem. A Eur J 21:3701–3707

    CAS  Google Scholar 

  51. Senkane K, Vinogradova EV, Suciu RM, Crowley VM, Zaro BW, Bradshaw JM, Brameld KA, Cravatt BF (2019) The proteome-wide potential for reversible covalency at cysteine. Angew Chem Int Ed Engl 58:11385–11389

    CAS  PubMed  Google Scholar 

  52. Shokoohinia Y, Chianese G, Appendino G, Di Marzo V, De Petrocellis L, Ghannadi A, Taghvayi R, Fattahian K, Soltani R, Taglialatela-Scafati O (2013) Some like it pungent and vile. TRPA1 as a molecular target for the malodorous vinyl disulfides from asafoetida. Fitoterapia 90:247–251

    CAS  PubMed  Google Scholar 

  53. Sinisi A, Millán E, Abay SM, Habluetzel A, Appendino G, Muñoz E, Taglialatela-Scafati O (2015) Poly-electrophilic sesquiterpene lactones from Vernonia amygdalina: new members and differences in their mechanism of thiol trapping and in bioactivity. J Nat Prod 78:1618–1623

    CAS  PubMed  Google Scholar 

  54. Sun Y, Yang T, Leak RK, Chen J, Zhang F (2017) Preventive and protective roles of dietary Nrf2 activators against central nervous system diseases. CNS Neurol Disord: Drug Targets 16:326–338

    CAS  Google Scholar 

  55. Szallasi Z, Blumberg PM (1991) Prostratin, a nonpromoting phorbol ester, inhibits induction by phorbol 12-myristate-13-acetate of ornithine decarboxylase, edema and hyperplasia in CD-1 mouse skin. Cancer Res 51:5355–5360

    CAS  PubMed  Google Scholar 

  56. Taglialatela-Scafati O, Minassi A, Chianese G, De Petrocellis L, Di Marzo V, Appendino G (2012) Sesquiterpenoids from common ragweed (Ambrosia artemisiifolia L.), an invasive biological polluter. Eur J Org Chem 2012:5162–5170

    CAS  Google Scholar 

  57. Wadhwa P, Anupreet Kharbanda A, Sharma A (2018) Thia-Michael addition: an emerging strategy in organic synthesis. Asian J Org Chem 7:634–661

    CAS  Google Scholar 

  58. Walsh AD (1947) Structures of ethylene oxide and cyclopropane. Nature 159:165

    CAS  PubMed  Google Scholar 

  59. Wang YY, Yang YX, Zhe H, He ZX, Zhou SF (2014) Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties. Drug Des Dev Ther 8:2075–2088

    CAS  Google Scholar 

  60. Widen JC, Kempema AM, Baur JW, Skopec HM, Edwards JT, Brown TJ, Brown DA, Meece FA, Harki DA (2018) Helenalin analogues targeting NF-kB p65: thiol reactivity and cellular potency of varied electrophiles. ChemMedChem 13:303–311

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zasowski EJ, Rybak JM, Rybak M (2015) The β-Lactams strike back: ceftazidime-avibactam. J Pharmacotherapy 35:755–770

    CAS  Google Scholar 

  62. Zega A (2017) NMR methods for identification of false positive in biochemical screens. J Med Chem 60:9437–9447

    CAS  PubMed  Google Scholar 

  63. Zhang Y, Wang W (2012) Recent advances in organocatalytic asymmetric Michael reactions. Catal Sci Technol 2:42–53

    CAS  Google Scholar 

  64. Zhong J, Minassi A, Prenen J, Taglialatela-Scafati O, Appendino G, Nilius B (2011) Umbellulone modulates TRP channels. Pflugers Arch 462:861–870

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giovanni Appendino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caprioglio, D., Minassi, A., Avonto, C. et al. Thiol-trapping natural products under the lens of the cysteamine assay: friends, foes, or simply alternatively reversible ligands?. Phytochem Rev (2020). https://doi.org/10.1007/s11101-020-09700-w

Download citation

Keywords

  • Thia-Michael reaction
  • Electrophilic natural products
  • Cysteamine assay
  • Cinnamaldehyde
  • Sesquiterpene lactones