Skip to main content
Log in

The overlooked rotational isomerism of C-glycosyl flavonoids

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

C-glycosyl flavonoids are important secondary plant metabolites with a wide range of biological activities. Rotational isomerism, arising from restricted bond rotation, has been observed on a portion of C-glycosyl flavonoids. NMR technique contributes most to the observation and research of this phenomenon. Signal duplication in NMR spectra may be the key characteristic of C-glycosyl flavonoids existing as rotamers. Bulky steric hindrance from the substituents at position 7 and sugar moieties are responsible for the restricted bond rotation. There are other influence factors including temperature, solvents, H-bonds and π-stacking, but these are of lesser importance. Difference exists between 8-C-glycosyl flavonoids and their 6-C-glycosyl isomers despite sharing the same flavonoid aglycone and sugar moiety. 8-C-glycosyl flavonoids are more likely to suffer from restricted rotation. The energy barriers between rotamers of C-glycosyl flavonoids seem not high enough for atropisomerism to be realized and the isolation of rotamers should be difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HPLC:

High performance liquid chromatography

NMR:

Nuclear magnetic resonance spectroscopy

References

  • Adams R, Yuan HC (1933) The stereochemistry of diphenyls and analogous compounds. Chem Rev 2:261–338

    Article  Google Scholar 

  • Adjé FA, Lozano YF, Le Gernevé C et al (2012) Phenolic acid and flavonol water extracts of Delonix regia red flowers. Ind Crops Prod 1:303–310

    Article  CAS  Google Scholar 

  • Antonio CJ, Delgado G, Salas EM et al (2002) Triterpenes, phenols, and other constituents from the leaves of Ochroma pyramidale (Balsa Wood, Bombacaceae). Preferred Conformations of 8-C-beta-D-glucopyranosyl-apigenin (vitexin). J Mex Chem Soc 3:254–258

    Google Scholar 

  • Bezuidenhoudt B, Brandt EV, Ferreira D (1987) Flavonoid analogues from Pterocarpus species. Phytochemistry 2:531–535

    Article  Google Scholar 

  • Bjoroy O, Rayyan S, Fossen T et al (2009a) Structural properties of anthocyanins: rearrangement of C-glycosyl-3-deoxyanthocyanidins in acidic aqueous solutions. J Agric Food Chem 15:6668–6677

    Article  CAS  Google Scholar 

  • Bjoroy O, Rayyan S, Fossen T et al (2009b) C-glycosylanthocyanidins synthesized from C-glycosylflavones. Phytochemistry 2:278–287

    Article  CAS  Google Scholar 

  • Camargo LMDM, Férézou J, Tinoco LW et al (2012) Flavonoids from Mimosa xanthocentra (Leguminosae: Mimosoideae) and molecular modeling studies for isovitexin-2″-O-α-L-rhamnopyranoside rotamers. Phytochem Lett 3:427–431

    Article  CAS  Google Scholar 

  • Chang CC, Ku AF, Tseng YY et al (2010) 6,8-Di-C-glycosyl flavonoids from Dendrobium huoshanense. J Nat Prod 2:229–232

    Article  CAS  Google Scholar 

  • Cheng G, Bai Y, Zhao Y et al (2000) Flavonoids from Ziziphus jujuba Mill var. spinosa. Tetrahedron 45:8915–8920

    Article  Google Scholar 

  • Courts FL, Williamson G (2015) The occurrence, fate and biological activities of C-glycosyl flavonoids in the human diet. Crit Rev Food Sci Nutr 10:1352–1367

    Article  CAS  Google Scholar 

  • Davoust D, Massias M, Molho D (1980) 13C NMR investigation of flavonoid C-β-D-glucosides. Detection of a conformational equilibrium. Org Magn Reson 3:218–219

    Article  Google Scholar 

  • Díaz JG, de Paz PP, Herz W (2010) New water soluble flavone and xanthone glycosides from Hypericum canariense L. Phytochem Lett 4:171–175

    Article  CAS  Google Scholar 

  • Eade RA, Hillis WE, Horn D et al (1965) Nuclear magnetic resonance studies. III. Rotational isomerism of some C-glucosylflavonoid acetates. Aust J Chem 5:715–721

    Article  Google Scholar 

  • Fan J, Lee I, Lin Y (2015) Flavone glycosides from commercially available Lophatheri Herba and their chromatographic fingerprinting and quantitation. J Food Drug Anal 4:821–827

    Article  CAS  Google Scholar 

  • Frank JH, Powder-George YL, Ramsewak RS et al (2012) Variable-temperature 1H-NMR studies on two C-glycosylflavones. Molecule 7:7914–7926

    Article  CAS  Google Scholar 

  • Gentili B, Horowitz R (1968) Flavonoids of citrus. IX. C-Glycosylflavones and a nuclear magnetic resonance method for differentiating 6- and 8-C-glycosyl isomers. J Org Chem 4:1571–1577

    Article  Google Scholar 

  • Glunz PW (2018) Recent encounters with atropisomerism in drug discovery. Bioorg Med Chem Lett 28:53–60

    Article  CAS  PubMed  Google Scholar 

  • Han QB, Lee SF, Qiao CF et al (2005) Complete NMR assignments of the antibacterial biflavonoid GB1 from Garcinia kola. Chem Pharm Bull 8:1034–1036

    Article  Google Scholar 

  • Hatano T, Mizuta S, Ito H et al (1999) C-Glycosidic flavonoids from Cassia occidentalis. Phytochemistry 7:1379–1383

    Article  Google Scholar 

  • Hillis WE, Horn D (1965) Nuclear magnetic resonance spectra and structures of some C-glycosyl flavonoids. Aust J Chem 4:531–542

    Article  Google Scholar 

  • Kato T, Morita Y (1993) The rotational isomers of peracetylated C-glycosylflavones. Heterocycles 2:965–973

    Google Scholar 

  • Kumarasamy E, Raghunathan R, Sibi MP et al (2015) Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations. Chem Rev 20:11239–11300

    Article  CAS  Google Scholar 

  • Kumazawa T, Kimura T, Matsuba S et al (2001) Synthesis of 8-C-Glucosylflavones. Carbohydr Res 3:183–193

    Article  Google Scholar 

  • LaPlante SR, Edwards PJ, Fader LD et al (2011) Revealing atropisomer axial chirality in drug discovery. ChemMedChem 3:505–513

    Article  CAS  Google Scholar 

  • Latté KP, Ferreira D, Venkatraman MS et al (2002) O-Galloyl-C-glycosylflavones from Pelargonium reniforme. Phytochemistry 4:419–424

    Article  Google Scholar 

  • Lewis K, Maxwell A, McLean S et al (2000) Room-temperature (1H, 13C) and variable-temperature (1H) NMR studies on spinosin. Magn Reson Chem 9:771–774

    Article  Google Scholar 

  • Liu XH, Wang F, Liang H et al (2004) Structure identification of jujubosike D. Acta Chim Sin 8:601–604

    Google Scholar 

  • Markham KR, Mues R, Stoll M et al (1987) NMR-spectra of flavone di-C-glycosides from Apometzgeria pubescens and the detection of rotational-isomerism in 8-C-hexosylflavones. Verlag Zeitschrift für Naturforschung 42:1039–1042

    Article  CAS  Google Scholar 

  • Mizuno T, Yabuya T, Kitajima J et al (2013) Identification of novel C-glycosylflavones and their contribution to flower colour of the Dutch iris cultivars. Plant Physiol Biochem 72:116–124

    Article  CAS  PubMed  Google Scholar 

  • Moss GP (1996) Basic terminology of stereochemistry (IUPAC Recommendations 1996). Pure Appl Chem 12:2193–2222

    Article  Google Scholar 

  • Mustafa K, Kjaergaard HG, Perry NB et al (2003) Hydrogen-bonded rotamers of 2′,4′,6′-trihydroxy-3′-formyldihydrochalcone, an intermediate in the synthesis of a dihydrochalcone from Leptospermum recurvum. Tetrahedron 32:6113–6120

    Article  CAS  Google Scholar 

  • Nassar MI (2006) Flavonoid triglycosides from the seeds of Syzygium aromaticum. Carbohydr Res 1:160

    Article  CAS  Google Scholar 

  • Nikolov N, Dellamonic G, Chopin J (1981) Di-C-glycosylflavones from Crataegus monogyna. Phytochemistry 12:2780–2781

    Article  Google Scholar 

  • Norbaek R, Brandt K, Kondo T (2000) Identification of flavone C-glycosides including a new flavonoid chromophore from barley leaves (Hordeum vulgare L.) by improved NMR techniques. J Agric Food Chem 5:1703–1707

    Article  CAS  Google Scholar 

  • Osorio E, Londoño J, Bastida J (2013) Low-density lipoprotein (LDL)-antioxidant biflavonoids from Garcinia madruno. Molecules 5:6092–6100

    Article  Google Scholar 

  • Pacifico M, Napolitano A, Masullo M et al (2011) Metabolite fingerprint of capim dourado (Syngonanthus nitens), a basis of Brazilian handcrafts. Ind Crops Prod 2:488–496

    Article  CAS  Google Scholar 

  • Pryakhina NI, Sheichenko V, Blinova KF (1984) Acylated C-glycosides of Iris lactea. Chem Nat Compd 5:554–559

    Article  Google Scholar 

  • Rabe C, Steenkamp JA, Joubert E et al (1994) Phenolic metabolites from rooibos tea (Aspalathus Linearis). Phytochemistry 35:1559–1565

    Article  CAS  Google Scholar 

  • Rayyan S, Fossen T, Andersen OM (2005a) Flavone C-glycosides from leaves of Oxalis triangularis. J Agric Food Chem 26:10057–10060

    Article  CAS  Google Scholar 

  • Rayyan S, Fossen T, Solheim NH et al (2005b) Isolation and identification of flavonoids, including flavone rotamers, from the herbal drug ‘Crataegi folium cum flore’ (hawthorn). Phytochem Anal 5:334–341

    Article  CAS  Google Scholar 

  • Rayyan S, Fossen T, Andersen OM (2010) Flavone C-glycosides from seeds of fenugreek, Trigonella foenum-graecum L. J Agric Food Chem 12:7211–7217

    Article  CAS  Google Scholar 

  • Shananatidi H, Bareli KH (1970) A convenient method for obtaining free energies of activation by the coalescence temperature of an unequal doublet. J Phys Chem 4:961–963

    Article  Google Scholar 

  • Smyth JE, Butler NM, Keller PA (2015) A twist of nature–the significance of atropisomers in biological systems. Nat Prod Rep 11:1562–1583

    Article  Google Scholar 

  • Suzuki R, Okada Y, Okuyama T (2003) Two flavone C-glycosides from the style of Zea mays with glycation inhibitory activity. J Nat Prod 4:564–565

    Article  CAS  Google Scholar 

  • Talhi O, Silva AMS (2012) Advances in C-glycosylflavonoid Research. Curr Org Chem 16:859–896

    Article  CAS  Google Scholar 

  • Tan P, Hou C, Liu Y et al (1991) Swertipunicoside. The first bisxanthone C-glycoside. J Org Chem 25:7130–7133

    Article  Google Scholar 

  • Toenjes ST, Gustafson JL (2018) Atropisomerism in medicinal chemistry: challenges and opportunities. Future Med Chem 4:409

    Article  CAS  Google Scholar 

  • Wang JN, Hou CY, Liu YL et al (1994) Swertifrancheside, an HIV-reverse transcriptase inhibitor and the first flavone-xanthone dimer, from Swertia franchetiana. J Nat Prod 2:211–217

    Article  CAS  Google Scholar 

  • Wang B, Zhu H, Wang D et al (2013) New spinosin derivatives from the seeds of Ziziphus mauritiana. Nat Prod Bioprospect 3:93–98

    Article  CAS  PubMed Central  Google Scholar 

  • Whaley AK, Ebrahim W, El-Neketi M et al (2017) New acetylated flavone C-glycosides from Iris lactea. Tetrahedron Lett 22:2171–2173

    Article  CAS  Google Scholar 

  • Xiao J, Capanoglu E, Jassbi AR et al (2016) Advance on the flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr 56:29–45

    Article  CAS  Google Scholar 

  • Xie YY, Xu ZL, Wang H et al (2011) A novel spinosin derivative from Semen Ziziphi Spinosae. J Asian Nat Prod Res 12:1151–1157

    Article  CAS  Google Scholar 

  • Yamamoto G (1992) Rotational isomerism and atropisomerism in acetal derivatives of 1,2,3,4-Tetrafluorotriptycene-9-carbaldehyde. Chem Soc Jpn 7:1967–1975

    Article  Google Scholar 

  • Yang CR, Jin YX, Zhang JZ et al (2010) Studies on chemical constituents from leaves of Dipsacus sativus. Zhongguo Yaoxue Zazhi 8:578–580

    Google Scholar 

  • Yang D, Xie H, Jia X et al (2015) Flavonoid C-glycosides from star fruit and their antioxidant activity. J Funct Foods 16:204–210

    Article  CAS  Google Scholar 

  • Ye XL (1999) Stereochemistry. Peking University Press, Beijing

    Google Scholar 

  • Zhang PC, Wang YH, Liu X et al (2002) Conformational study of 8-C-glucosyl-prunetin by dynamic NMR spectroscopy. Chin Chem Lett 7:645–648

    Google Scholar 

  • Zhang PC, Wang YH, Liu X et al (2003) Conformational study of 8-C-glucosyl-prunetin by dynamic NMR spectroscopy. Acta Chim Sin 7:1157–1160

    Google Scholar 

  • Zhou G, Tang L, Wang T et al (2016) Phytochemistry and pharmacological activities of Vaccaria hispanica (Miller) Rauschert: a review. Phytochem Rev 5:813–827

    Article  CAS  Google Scholar 

  • Zhou G, Wu H, Wang T et al (2017) C-glycosylflavone with rotational isomers from Vaccaria hispanica (Miller) Rauschert seeds. Phytochem Lett 19:241–247

    Article  CAS  Google Scholar 

  • Zuo YM, Liu DH, Zhang ZL et al (2014) Study on chemical components of Tripterospermum chinense. Zhongyaocai 11:2002–2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Yan, R., Wang, X. et al. The overlooked rotational isomerism of C-glycosyl flavonoids. Phytochem Rev 18, 443–461 (2019). https://doi.org/10.1007/s11101-019-09601-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09601-7

Keywords

Navigation