Advertisement

Phytochemistry Reviews

, Volume 17, Issue 3, pp 627–643 | Cite as

Therapeutic properties of lectins in herbal supplements

  • K. M. Mbae
  • S. Umesha
  • H. M. Manukumar
Article
  • 158 Downloads

Abstract

Medicinal plants host numerous therapeutic low molecular weight phytochemicals and macromolecules such as polysaccharides and proteins. Lectins are glycan binding proteins ubiquitous in the cell and the extracellular surface of all living organisms. Plant parts contain lectins with diverse glycan binding specificities. This review highlights the occurrence of lectins in herbal remedies, their persistence, and bioactivity. Lectins’ roles in plants include signaling, defense, and stress responses. The species, plant part, biotic and abiotic factors influence the type and concentration of lectins. Many lectins withstand herbal portions preparation procedures, resist degradation in the alimentary canal and crossover to the circulatory system. Exogenous plant lectins bind glycans with high specificity eliciting cellular responses that include antimicrobial, antitumor and immunomodulation effects. Some lectins are deleterious to normal physiology.

Keywords

Lectins Medicinal herbs Antitumor Immunomodulation 

Notes

Acknowledgements

The author Mbae K. M. acknowledges financial support given by the Ministry of External Affairs, Government of India through the Indian Council for Cultural Relations to pursue Ph.D. under the Scholarship Scheme for students from African Countries.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

References

  1. Adamczyk B, Tharmalingam T, Rudd PM (2012) Glycans as cancer biomarkers. Biochim Biophys Acta 1820(9):1347–1353CrossRefPubMedGoogle Scholar
  2. Ahmed FRS, Amin R, Hasan I, Asaduzzaman AKM, Kabir SR (2017) Antitumor properties of a methyl-β-d-galactopyranoside specific lectin from Kaempferia rotunda against Ehrlich ascites carcinoma cells. Int J Biol Macromol 102:952–959CrossRefPubMedGoogle Scholar
  3. André S, Kaltner H, Manning JC, Murphy PV, Gabius HJ (2015) Lectins: getting familiar with translators of the sugar code. Molecules 20(2):1788–1823CrossRefPubMedGoogle Scholar
  4. Ayouba A, Chatelain C, Rougé P (1991) Legume lectins interact with muramic acid and N-acetylmuramic acid. FEBS Lett 289(1):102–104CrossRefPubMedGoogle Scholar
  5. Bajaj M, Hinge A, Limaye LS, Gupta RK, Surolia A, Kale VP (2011) Mannose-binding dietary lectins induce adipogenic differentiation of the marrow-derived mesenchymal cells via an active insulin-like signaling mechanism. Glycobiology 21(4):521–529CrossRefPubMedGoogle Scholar
  6. Bari AU, Santiago MQ, Osterne VJS, Pinto-Junior VR, Pereira LP, Silva-Filho JC, Debray H, Rocha BAM, Delatorre P, Teixeira CS, Neto CC (2016) Lectins from Parkia biglobosa and Parkia platycephala: a comparative study of structure and biological effects. Int J Biol Macromol 92:194–201CrossRefPubMedGoogle Scholar
  7. Chang CP, Yang MC, Liu HS, Lin YS, Lei HY (2007) Concanavalin A induces autophagy in hepatoma cells and has a therapeutic effect in a murine in situ hepatoma model. Hepatology 45(2):286–296CrossRefPubMedGoogle Scholar
  8. Chen Y, Peumans WJ, Hause B, Bras J, Kumar M, Proost P, Barre A, Rougé P, Van Damme EJM (2002) Jasmonate methyl ester induces the synthesis of a cytoplasmic/nuclear chitooligosaccharide-binding lectin in tobacco leaves. FASEB J 16:905907CrossRefGoogle Scholar
  9. Clement F, Venkatesh YP (2010) Dietary garlic (Allium sativum) lectins, ASA I and ASA II, are highly stable and immunogenic. Int Immunopharmacol 10(10):1161–1169CrossRefPubMedGoogle Scholar
  10. Coelho LCBB, Silva PMDS, Lima VLDM, Pontual EV, Paiva PMG, Napoleão TH, Correia MTDS (2017) Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications. Evid Based Complement Altern Med.  https://doi.org/10.1155/2017/1594074 CrossRefGoogle Scholar
  11. Corfield A (2017) Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2):119–147CrossRefPubMedGoogle Scholar
  12. Costa RM, Vaz AF, Oliva ML, Coelho LC, Correia MT, Carneiro-da-Cunha MG (2010) A new mistletoe Phthirusa pyrifolia leaf lectin with antimicrobial properties. Process Biochem 45(4):526–533CrossRefGoogle Scholar
  13. Da Silva LCN, Correia MTDS (2014) Plant lectins and toll-like receptors: implications for therapy of microbial infections. Front Microbiol 5:1–3Google Scholar
  14. Dan X, Liu W, Ng TB (2016) Development and applications of lectins as biological tools in biomedical research. Med Res Rev 36(2):221–247CrossRefPubMedGoogle Scholar
  15. Dang L, Van Damme EJ (2016) Genome-wide identification and domain organization of lectin domains in cucumber. Plant Physiol Biochem 108:165–176CrossRefPubMedGoogle Scholar
  16. Datta D, Pohlentz G, Schulte M, Kaiser M, Goycoolea FM, Müthing J, Mormann M, Swamy MJ (2016) Physico-chemical characteristics and primary structure of an affinity-purified α-d-galactose-specific, jacalin-related lectin from the latex of mulberry (Morus indica). Arch Biochem Biophys 609:59–68CrossRefPubMedGoogle Scholar
  17. De Mejía EG, Prisecaru VI (2005) Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci Nutr 45(6):425–445CrossRefPubMedGoogle Scholar
  18. de Oliveira Figueiroa E, Albuquerque da Cunha CR, Albuquerque P, de Paula RA, Aranda-Souza MA, Alves MS, Tereza M (2017) Lectin-carbohydrate interactions: implications for the development of new anticancer agents. Curr Med Chem 24(34):3667–3680CrossRefPubMedGoogle Scholar
  19. Deepa M, Priya S (2012) Purification and characterization of a novel anti-proliferative lectin from Morus alba L. leaves. Protein Pept Lett 19(8):839–845CrossRefPubMedGoogle Scholar
  20. Dias RDO, Machado LDS, Migliolo L, Franco OL (2015) Insights into animal and plant lectins with antimicrobial activities. Molecules 20(1):519–541CrossRefGoogle Scholar
  21. Dimitrijevic R, Jadranin M, Burazer L, Ostojic S, Gavrovic-Jankulovic M (2010) Evaluation of the thermal stability and digestibility of heterologously produced banana lectin. Food Chem 120(4):1113–1118CrossRefGoogle Scholar
  22. Esch L, Schaffrath U (2017) An update on jacalin-like lectins and their role in plant defense. Int J Mol Sci 18(7):1592CrossRefPubMedCentralGoogle Scholar
  23. Ferreira R, Napoleão TH, Santos AF, Sá RA, Carneiro-da-Cunha MG, Morais MMC, Silva-Lucca RA, Oliva MLV, Coelho LCBB, Paiva PM (2011) Coagulant and antibacterial activities of the water-soluble seed lectin from Moringa oleifera. Lett Appl Microbiol 53(2):186–192CrossRefPubMedGoogle Scholar
  24. Ferriz-Martinez RA, Torres-Arteaga IC, Blanco-Labra A, Garcia-Gasca T (2010) The role of plant lectins in cancer treatment. In: Vazquez MCM, Navarro S (eds) New approaches in the treatment of cancer. Nova Science Publishers Inc., New YorkGoogle Scholar
  25. Fu LL, Zhou CC, Yao S, Yu JY, B Liu, Bao JK (2011) Plant lectins: targeting programmed cell death pathways as antitumor agents. Int J Biochem Cell Biol 43(10):1442–1449CrossRefPubMedGoogle Scholar
  26. Gabius HJ, Roth J (2017) An introduction to the sugar code. Histochem Cell Biol 147(2):111–117CrossRefPubMedGoogle Scholar
  27. Ghazarian H, Idoni B, Oppenheimer SB (2011) A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 113(3):236–247CrossRefPubMedGoogle Scholar
  28. Gomes FS, Procópio TF, Napoleão TH, Coelho LCBB, Paiva PMG (2013) Antimicrobial lectin from Schinus terebinthifolius leaf. J Appl Microbiol 114(3):672–679CrossRefPubMedGoogle Scholar
  29. Hartmann M, Lindhorst TK (2011) The bacterial lectin FimH, a target for drug discovery: carbohydrate inhibitors of type 1 fimbriae-mediated bacterial adhesion. Eur J Org Chem.  https://doi.org/10.1002/ejoc.201100407 CrossRefGoogle Scholar
  30. Hinge A, Bajaj M, Limaye L, Surolia A, Kale V (2010) Oral administration of insulin receptor-interacting lectins leads to an enhancement in the hematopoietic stem and progenitor cell pool of mice. Stem Cells Dev 19(2):163–174CrossRefPubMedGoogle Scholar
  31. Inamdar SR, Eligar SM, Ballal S, Belur S, Kalraiya RD, Swamy BM (2016) Exquisite specificity of mitogenic lectin from Cephalosporium curvulum to core fucosylated N-glycans. Glycoconj J 33(1):19–28CrossRefPubMedGoogle Scholar
  32. Jandú JJ, Moraes Neto N, Zagmignan A, de Sousa EM, Brelaz-de-Castro MC, dos Santos Correia MT, da Silva LC (2017) Targeting the immune system with plant lectins to combat microbial infections. Front Pharmacol 8:671CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jimenez P, Cabrero P, Basterrechea JE, Tejero J, Cordoba-Diaz D, Cordoba-Diaz M, Girbes T (2014) Effects of short-term heating on total polyphenols, anthocyanins, antioxidant activity and lectins of different parts of dwarf elder (Sambucus ebulus L.). Plant Foods Hum Nutr 69(2):168–174CrossRefPubMedGoogle Scholar
  34. Jin S, Zhang X, Daniell H (2012) Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol J 10(3):313–327CrossRefPubMedGoogle Scholar
  35. Kabir SR, Reza MA (2014) Antibacterial activity of Kaempferia rotunda rhizome lectin and its induction of apoptosis in Ehrlich ascites carcinoma cells. Appl Biochem Biotechnol 172(6):2866–2876CrossRefPubMedGoogle Scholar
  36. Kabir SR, Nabi MM, Nurujjaman M, Reza MA, Alam AK, Zaman RU, Khalid-Bin-Ferdaus KM, Amin R, Khan MMH, Hossain MA, Uddin MS (2015) Momordica charantia seed lectin: toxicity, bacterial agglutination and antitumor properties. Appl Biochem Biotechnol 175(5):2616–2628CrossRefPubMedGoogle Scholar
  37. Kailemia MJ, Park D, Lebrilla CB (2017) Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem 409(2):395–410CrossRefPubMedGoogle Scholar
  38. Kamsu-Foguem B, Foguem C (2014) Adverse drug reactions in some African herbal medicine: literature review and stakeholders’ interview. Integr Med Res 3(3):126–132CrossRefPubMedPubMedCentralGoogle Scholar
  39. Karnchanatat A (2012) Antimicrobial activity of lectins from plants. In: Bobbarala V (ed) Antimicrobial agents. IntechOpen, London.  https://doi.org/10.5772/33456 CrossRefGoogle Scholar
  40. Khatun S, Ashraduzzman M, Absar N, Pervin F, Abbas Ali M, Bari L, Karim MR, Hassan P (2007) Purification and characterization of three galactose specific lectins from Sajna (Moringa oleifera L.) leaves. J Chin Chem Soc 54(2):357–364CrossRefGoogle Scholar
  41. Khatun S, Khan MM, Ashraduzzaman M, Pervin F, Bari L, Absar N (2009) Antibacterial activity and cytotoxicity of three lectins purified from drumstick (Moringa oleifera Lam.) leaves. J Bio Sci 17:89–94Google Scholar
  42. Kheeree N, Sangvanich P, Puthong S, Karnchanatat A (2010) Antifungal and antiproliferative activities of lectin from the rhizomes of Curcuma amarissima Roscoe. Appl Biochem Biotechnol 162(3):912–925CrossRefPubMedGoogle Scholar
  43. Klafke GB, Moreira GMSG, Pereira JL, Oliveira PD, Conceição FR, Lund RG, Grassmann AA, Dellagostin OA, da Silva Pinto L (2016) Lectin I from Bauhinia variegata (BVL-I) expressed by Pichia pastoris inhibits initial adhesion of oral bacteria in vitro. Int J Biol Macromol 93:913–918CrossRefPubMedGoogle Scholar
  44. Kopitz J (2017) Lipid glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2):175–198CrossRefPubMedGoogle Scholar
  45. Lagarda-Diaz I, Guzman-Partida AM, Vazquez-Moreno L (2017) Legume lectins: proteins with diverse applications. Int J Mol Sci 18(6):1242CrossRefPubMedCentralGoogle Scholar
  46. Lajolo FM, Genovese MI (2002) Nutritional significance of lectins and enzyme inhibitors from legumes. J Agric Food Chem 50(22):6592–6598CrossRefPubMedGoogle Scholar
  47. Lima TA, Fernandes KM, Oliveira APS, Dornelles LP, Martins GF, Napoleão TH, Paiva PM (2016) Termiticidal lectins from Myracrodruon urundeuva (Anacardiaceae) cause midgut damage when ingested by Nasutitermes corniger (Isoptera: Termitidae) workers. Pest Manag Sci 73(5):991–998CrossRefPubMedGoogle Scholar
  48. Liu W, Hu YL, Wang M, Xiang Y, Hu Z, Wang DC (2002) Purification, crystallization and preliminary X-ray diffraction analysis of a novel mannose-binding lectin from Gastrodia elata with antifungal properties. Acta Crystallogr D Biol Crystallogr 58(10):1833–1835CrossRefPubMedGoogle Scholar
  49. Liu B, Peng H, Yao Q, Li J, Van Damme E, Balzarini J, Bao JK (2009) Bioinformatics analyses of the mannose-binding lectins from Polygonatum cyrtonema, Ophiopogon japonicus and Liparis noversa with antiproliferative and apoptosis-inducing activities. Phytomedicine 16(6):601–608CrossRefPubMedGoogle Scholar
  50. Liu B, Bian HJ, Bao JK (2010) Plant lectins: potential antineoplastic drugs from bench to clinic. Cancer Lett 287(1):1–12CrossRefPubMedGoogle Scholar
  51. Liu T, Wu L, Wang D, Wang H, Chen J, Yang C, Bao J, Wu C (2016) Role of reactive oxygen species-mediated MAPK and NF-κB activation in polygonatum cyrtonema lectin-induced apoptosis and autophagy in human lung adenocarcinoma A549 cells. J Biochem 160(6):315–324CrossRefPubMedGoogle Scholar
  52. Lu Q, Li N, Luo J, Yu M, Huang Y, Wu X, Wu H, Liu XY, Li G (2012) Pinellia pedatisecta agglutinin interacts with the methylosome and induces cancer cell death. Oncogenesis.  https://doi.org/10.1038/oncsis.2012.30 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lusvarghi S, Bewley CA (2016) Griffithsin: an antiviral lectin with outstanding therapeutic potential. Viruses 8(10):296CrossRefPubMedCentralGoogle Scholar
  54. Manning JC, Romero A, Habermann F, García Caballero G, Kaltner H, Gabius HJ (2017) Lectins: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2):199–222CrossRefPubMedGoogle Scholar
  55. Moura MC, Napoleão TH, Coriolano MC, Paiva PMG, Figueiredo RCBQ, Coelho LCBB (2015) Water-soluble Moringa oleifera lectin interferes with growth, survival and cell permeability of corrosive and pathogenic bacteria. J Appl Microbiol 119(3):666–676CrossRefPubMedGoogle Scholar
  56. Nascimento KS, Nascimento FLFD, Silva MTL, Nobre CB, Moreira CG, Brizeno LAC, Ponte EL, Assreuy AMS, Cavada BS (2016) Purification of a thermostable antinociceptive lectin isolated from Andira anthelmia. J Mol Recognit 29:248–252CrossRefPubMedGoogle Scholar
  57. Ogawa H, Date K (2014) The “white kidney bean incident” in Japan. In: Hirabayashi J (ed) Lectins: methods and protocols. Springer, New YorkGoogle Scholar
  58. Oliveira JTA, Rios FJB, Vasconcelos IM, Ferreira FVA, Nojosa GBA, Medeiros DA (2004) Cratylia argentea seed lectin, a possible defensive protein against plant-eating organisms: effects on rat metabolism and gut histology. Food Chem Toxicol 42(11):1737–1747CrossRefPubMedGoogle Scholar
  59. Oliveira MDL, Andrade CAS, Santos-Magalhães NS, Coelho LCBB, Teixeira JA, Carneiro-da-Cunha MG, Correia MTS (2008) Purification of a lectin from Eugenia uniflora L. seeds and its potential antibacterial activity. Lett Appl Microbiol 46(3):371–376CrossRefPubMedGoogle Scholar
  60. Petnual P, Sangvanich P, Karnchanatat A (2010) A lectin from the rhizomes of turmeric (Curcuma longa L.) and its antifungal, antibacterial, and α-glucosidase inhibitory activities. Food Sci Biotechnol 19(4):907–916CrossRefGoogle Scholar
  61. Petrova MI, Lievens E, Verhoeven TL, Macklaim JM, Gloor G, Schols D, Vanderleyden J, Reid G, Lebeer S (2016) The lectin-like protein 1 in Lactobacillus rhamnosus GR-1 mediates tissue-specific adherence to vaginal epithelium and inhibits urogenital pathogens. Sci Rep.  https://doi.org/10.1038/srep37437 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Peumans WJ, Barre A, Hao Q, Rougé P, Van Damme EJM (2000) Higher plants developed structurally different motifs to recognize foreign glycans. Trends Glycosci Glycotechnol 12(64):83–102CrossRefGoogle Scholar
  63. Poiroux G, Barre A, van Damme EJ, Benoist H, Rougé P (2017) Plant lectins targeting O-glycans at the cell surface as tools for cancer diagnosis, prognosis and therapy. Int J Mol Sci 18(6):1232CrossRefPubMedCentralGoogle Scholar
  64. Prasanna VK, Venkatesh YP (2015) Characterization of onion lectin (Allium cepa agglutinin) as an immunomodulatory protein inducing Th1-type immune response in vitro. Int Immunopharmacol 26(2):304–313CrossRefPubMedGoogle Scholar
  65. Procópio TF, Moura MC, Albuquerque LP, Gomes FS, Santos ND, Coelho LCBB, Pontual EV, Paiva PM, Napoleão TH (2017) Antibacterial lectins: action mechanisms, defensive roles and biotechnological potential. In: Collins E (ed) Antibacterials: synthesis, properties and biological activities. Nova Science Publishers Inc, New YorkGoogle Scholar
  66. Ratanapo S, Ngamjunyaporn W, Chulavatnatol M (1998) Sialic acid binding lectins from leaf of mulberry (Morus alba). Plant Sci 139(2):141–148CrossRefGoogle Scholar
  67. Rolim LA, Macêdo MF, Sisenando HA, Napoleão TH, Felzenszwalb I, Aiub CA, Coelho LC, Medeiros SR, Paiva PM (2011) Genotoxicity evaluation of Moringa oleifera seed extract and lectin. J Food Sci.  https://doi.org/10.1111/j.1750-3841.2010.01990.x PubMedCrossRefGoogle Scholar
  68. Rosenberg SA (2014) IL-2: the first effective immunotherapy for human cancer. J Immunol 192(12):5451–5458CrossRefPubMedGoogle Scholar
  69. Roy R, Cao Y, Kaltner H, Kottari N, Shiao TC, Belkhadem K, André S, Manning JC, Murphy PV, Gabius HJ (2017) Teaming up synthetic chemistry and histochemistry for activity screening in galectin-directed inhibitor design. Histochem Cell Biol 147(2):285–301CrossRefPubMedGoogle Scholar
  70. Saeed B, Baranwal VK, Khurana P (2016) Identification and expression profiling of the lectin gene superfamily in mulberry. Plant Genome 9(2):1–13CrossRefGoogle Scholar
  71. Saha C, Das M, Stephen-Victor E, Friboulet A, Bayry J, Kaveri SV (2016) Differential effects of Viscum album preparations on the maturation and activation of human dendritic cells and CD4+ T cell responses. Molecules 21(7):912CrossRefGoogle Scholar
  72. Seifert G, Jesse P, Laengler A, Reindl T, Lüth M, Lobitz S, Henze G, Prokop A, Lode HN (2008) Molecular mechanisms of mistletoe plant extract-induced apoptosis in acute lymphoblastic leukemia in vivo and in vitro. Cancer Lett 264(2):218–228CrossRefPubMedGoogle Scholar
  73. Shanmugavel S, Velayutham V, Kamalanathan T, Periasamy M, Munusamy A, Sundaram J (2016) Isolation and analysis of mannose/trehalose/maltose specific lectin from jack bean with antibruchid activity. Int J Biol Macromol 91:1–14CrossRefPubMedGoogle Scholar
  74. Shao B, Wang S, Zhou J, Ke L, Rao P (2011) A novel lectin from fresh rhizome of Alisma orientale (Sam.) Juzep. Process Biochem 46(8):1554–1559CrossRefGoogle Scholar
  75. Sharon N, Lis H (2007) Lectins, 2nd edn. Springer, DordrechtCrossRefGoogle Scholar
  76. Silva AFB, Matos MP, Ralph MT, Silva DL, de Alencar NM, Ramos MV, Lima-Filho JV (2016a) Comparison of immunomodulatory properties of mannose-binding lectins from Canavalia brasiliensis and Cratylia argentea in a mice model of Salmonella infection. Int Immunopharmacol 31:233–238CrossRefPubMedGoogle Scholar
  77. Silva PM, Napoleão TH, Silva LC, Fortes DT, Lima TA, Zingali RB, Pontual EV, Araújo JM, Medeiros PL, Rodrigues CG, Gomes FS (2016b) The juicy sarcotesta of Punica granatum contains a lectin that affects growth, survival as well as adherence and invasive capacities of human pathogenic bacteria. J Funct Foods 27:695–702CrossRefGoogle Scholar
  78. Singh BN, Saha C, Galun D, Upreti DK, Bayry J, Kaveri SV (2016) European Viscum album: a potent phytotherapeutic agent with multifarious phytochemicals, pharmacological properties and clinical evidence. RSC Adv 6(28):23837–23857CrossRefGoogle Scholar
  79. Sureshkumar T, Priya S (2012) Purification of a lectin from M. rubra leaves using immobilized metal ion affinity chromatography and its characterization. Appl Biochem Biotechnol 168(8):2257–2267CrossRefPubMedGoogle Scholar
  80. Taylor ME, Drickamer K, Schnaar RL, Etzler ME, Varki A (2017) Discovery and classification of glycan-binding proteins. In: Varki A et al (eds) Essentials of glycobiology [internet]. 3rd edn. Cold Spring Harbor Laboratory Press, New York. Available from https://www.ncbi.nlm.nih.gov/books/NBK453061/.  https://doi.org/10.1101/glycobiology.3e.028
  81. Timoshenko AV, Gorudko IV, Gabius HJ (2014) Lectins from medicinal plants: bioeffectors with diverse activities. In: Jetter R (ed) Phytochemicals-biosynthesis, function and application. Springer, BaselGoogle Scholar
  82. Van Buul VJ, Brouns FJ (2014) Health effects of wheat lectins: a review. J Cereal Sci 59(2):112–117CrossRefGoogle Scholar
  83. Van Damme EJ (2008) Plant lectins as part of the plant defense system against insects. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, DordrechtGoogle Scholar
  84. Van Damme EJ (2014) History of plant lectin research. In: Hirabayashi J (ed) Lectins: methods and protocols. Springer, New YorkGoogle Scholar
  85. Van Damme EJ, Hause B, Hu J, Barre A, Rougé P, Proost P, Peumans WJ (2002) Two distinct jacalin-related lectins with a different specificity and subcellular location are major vegetative storage proteins in the bark of the black mulberry tree. Plant Physiol 130(2):757–769CrossRefPubMedPubMedCentralGoogle Scholar
  86. Van Holle S, Smagghe G, Van Damme EJ (2016) Overexpression of Nictaba-Like lectin genes from glycine max confers tolerance toward Pseudomonas syringae infection, aphid infestation and salt stress in transgenic Arabidopsis plants. Front Plant Sci 7:1–17Google Scholar
  87. Vasconcelos IM, Oliveira JTA (2004) Anti-nutritional properties of plant lectins. Toxicon 44(4):385–403CrossRefPubMedGoogle Scholar
  88. Vigneshwaran V, Thirusangu P, Vijay Avin BR, Krishna V, Pramod SN, Prabhakar BT (2017) Immunomodulatory glc/man-directed Dolichos lablab lectin (DLL) evokes anti-tumour response in vivo by counteracting angiogenic gene expressions. Clin Exp Immunol.  https://doi.org/10.1111/cei.12959 PubMedCrossRefPubMedCentralGoogle Scholar
  89. Wawra S, Fesel P, Widmer H, Timm M, Seibel J, Leson L, Kesseler L, Nostadt R, Hilbert M, Langen G, Zuccaro A (2016) The fungal-specific β-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants. Nat Commun 7:1–11CrossRefGoogle Scholar
  90. Whitfield C, Szymanski CM, Aebi M (2017) Eubacteria. In: Varki A et al (eds) Essentials of glycobiology [internet]. 3rd edn. Cold Spring Harbor Laboratory Press, New York. Available from https://www.ncbi.nlm.nih.gov/books/NBK453062/.  https://doi.org/10.1101/glycobiology.3e.021
  91. Xiao X, He H, Ding X, Yang Q, Liu X, Liu S, Rang J, Wang T, Zuo M, Xia L (2015) Purification and cloning of lectin that induce cell apoptosis from Allium chinense. Phytomedicine 22(2):238–244CrossRefPubMedGoogle Scholar
  92. Yan Q, Jiang Z, Yang S, Deng W, Han L (2005) A novel homodimeric lectin from Astragalus mongholicus with antifungal activity. Arch Biochem Biophys 442(1):72–81CrossRefPubMedGoogle Scholar
  93. Yan Q, Li Y, Jiang Z, Sun Y, Zhu L, Ding Z (2009) Antiproliferation and apoptosis of human tumor cell lines by a lectin (AMML) of Astragalus mongholicus. Phytomedicine 16(6):586–593CrossRefPubMedGoogle Scholar
  94. Yan Q, Zhu L, Kumar N, Jiang Z, Huang L (2010) Characterization of a novel monomeric lectin (AML) from Astragalus membranaceus with anti-proliferative activity. Food Chem 122(3):589–595CrossRefGoogle Scholar
  95. Zarkovic N, Vukovic T, Loncaric I, Miletic M, Zarkovic K, Borovic S, Cipak A, Sabolovic S, Konitzer M, Mang S (2001) An overview on anticancer activities of the Viscum album extract Isorel®. Cancer Biother Radiopharm 16(1):55–62CrossRefPubMedGoogle Scholar
  96. Zhang W, Peumans WJ, Barre A, Houles Astoul C, Rovira P, Rougé P, Proost P, Truffa-Bachi P, Jalali AA, Van Damme EJ (2000) Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta 210(6):970–978CrossRefPubMedGoogle Scholar
  97. Zhang X, Chen LX, Ouyang L, Cheng Y, Liu B (2012) Plant natural compounds: targeting pathways of autophagy as anti-cancer therapeutic agents. Cell Prolif 45(5):466–476CrossRefPubMedGoogle Scholar
  98. Zhou W, Gao Y, Xu S, Yang Z, Xu T (2014) Purification of a mannose-binding lectin Pinellia ternata agglutinin and its induction of apoptosis in Bel-7404 cells. Protein Expr Purif 93:11–17CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Studies in BiotechnologyUniversity of MysoreManasagangotri, MysoreIndia
  2. 2.Department of Food ScienceMeru University of Science and TechnologyMeruKenya

Personalised recommendations