Phenolic antioxidants of Morus nigra roots, and antitumor potential of morusin

  • Zoofishan Zoofishan
  • Judit Hohmann
  • Attila Hunyadi


Phenolic compounds are of considerable biomedical interest due to their antioxidant properties and potential in the prevention and possibly treatment of many chronic diseases. The fruits, leaves and root bark of Morus nigra (Moraceae), the black mulberry tree, have a long history of use for various therapeutic purposes in traditional medicine worldwide. The roots of the plant are known to be a rich source of phenolic compounds with a particularly high chemical diversity. This mini-review compiles the currently available knowledge on phenolic compounds reported from Morus nigra roots, and provides a brief overview on the antioxidant activity with a focus on the available in vivo evidence. Morusin, a major phenolic antioxidant of the root bark, has attracted a rapidly increasing scientific interest for its versatile and potent antitumor properties; recent developments in this regard, including morusin’s promising activity against cancer stem cells, are also discussed in the paper.


Anticancer activity of prenylflavone Black mulberry root bark Cancer stem cell Ethnopharmacology In vivo antioxidant activity 



Financial support from the National Research, Development and Innovation Office, Hungary (NKFIH; K119770), and from the Grant GINOP 2.3.2-15-2016-00012 is acknowledged. A.H. acknowledges the János Bolyai fellowship of the Hungarian Academy of Sciences and the Kálmán Szász Prize.


  1. Abbas GM, Abdel-Bar FM, Baraka HN, Gohar AA, Lahloub MF (2014) A new antioxidant stilbene and other constituents from the stem bark of Morus nigra L. Nat Prod Res 28(13):952–959CrossRefPubMedGoogle Scholar
  2. Ahmad J, Farooqui AH, Siddiqui TO (1985) Morus nigra. Hamdard Med 15:76–78Google Scholar
  3. Arfan M, Khan R, Rybarczyk A, Amarowicz R (2012) Antioxidant activity of mulberry fruit extracts. Int J Mol Sci 13(2):2472–2480CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bircher AG, Bircher WH (2000) Encyclopedia of fruit trees and edible flowering plants in Egypt and the subtropics. American University in Cairo Press, Cairo, EgyptGoogle Scholar
  5. Chan EW, Lye PY, Wong SK (2016) Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin J Nat Med 14(1):17–30PubMedGoogle Scholar
  6. Cheng PS, Hu CC, Wang CJ, Lee YJ, Chung WC, Tseng TH (2017) Involvement of the antioxidative property of Morusin in blocking phorbol ester-induced malignant transformation of JB6 P+ mouse epidermal cells. Chem Biol Interact 264:34–42CrossRefPubMedGoogle Scholar
  7. Cho SW, Na W, Choi M, Kang SJ, Lee SG, Choi CY (2017) Autophagy inhibits cell death induced by the anti-cancer drug Morusin. Am J Cancer Res 7(3):518–530PubMedPubMedCentralGoogle Scholar
  8. Cui XQ, Wang HQ, Liu C, Chen RY (2008) Study of antioxidant phenolic compounds from stem barks of Morus yunanensis. Zhongguo Zhong Yao Za Zhi 33:1569–1572PubMedGoogle Scholar
  9. De Souza MM, Bittar M, Cechinel V, Yunes RA, Messana I, Delle Monache F, Ferrari FZ (2000) Antinociceptive properties of Morusin, a prenylflavonoid isolated from Morus nigra root bark. Z Naturforsch C 55:256–260CrossRefPubMedGoogle Scholar
  10. Dillard CJ, Bruce German JB (2000) Phytochemicals: nutraceuticals and human health. J Sci Food Agric 80:1744–1756CrossRefGoogle Scholar
  11. Dominguez-Avila JA, Wall-Medrano A, Velderrain-Rodriguez GR, Chen CYO, Salazar-Lopez NJ, Robles-Sanchez M, Gonzalez-Aguilar GA (2017) Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct 8(1):15–38CrossRefPubMedGoogle Scholar
  12. Ercisli S, Orhan E (2007) Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem 103:1380–1384CrossRefGoogle Scholar
  13. Ercisli S, Tosun M, Duralija B, Voca S, Sengul M, Turan M (2009) Phytochemical content of some black (Morus nigra L.) and purple (Morus rubra L.) mulberry genotypes. Food Technol Biotechnol 48(1):102–106Google Scholar
  14. Feng RZ, Wang Q, Tong WZ, Xiong J, Wei Q, Zhou WH, Yin ZQ, Yin XY, Wang LY, Chen YQ, Lai YH, Huang HY, Luo QL, Wang L, Jia RY, Song X, Zou YF, Li LX (2015) Extraction and antioxidant activity of flavonoids of Morus nigra. Int J Clin Exp Med 8(12):22328–22336PubMedPubMedCentralGoogle Scholar
  15. Ferrari F, Monacelli B, Messana I (1999) Comparison between in vivo and in vitro metabolite production of Morus nigra. Planta Med 65(1):85–87CrossRefPubMedGoogle Scholar
  16. Fu W, Lei YF, Cai YL, Zhou DN, Ruan JL (2009) A new alkylene dihydrofuran glycoside with antioxidation activity from the root bark of Morus alba L. Chin Chem Lett 21:821–823CrossRefGoogle Scholar
  17. Fukai T, Kaitou K, Terada S (2005) Antimicrobial activity of 2-arylbenzofurans from Morus species against methicillin-resistant Staphylococcus aureus. Fitoterapia 76:708–711CrossRefPubMedGoogle Scholar
  18. Gao L, Wang L, Sun Z, Li Q, Wang Q, Yi C, Wang X (2017) Morusin shows potent antitumor activity for human hepatocellular carcinoma in vitro and in vivo through apoptosis induction and angiogenesis inhibition. Drug Des Dev Ther 11:1789–1802CrossRefGoogle Scholar
  19. Grieve M (1931) A modern herbal, vol 2, I-Z. UK Jonathan Cape, LondonGoogle Scholar
  20. Guo H, Liu C, Yang L, Dong L, Wang L, Wang Q, Li H, Zhang J, Lin P, Wang X (2016) Morusin inhibits glioblastoma stem cell growth in vitro and in vivo through stemness attenuation, adipocyte transdifferentiation and apoptosis induction. Mol Carcinog 55(1):77–89CrossRefPubMedGoogle Scholar
  21. Hanelt P, Buttner R, Mansfeld R (2001) Mansfeld’s encyclopedia of agricultural and horticultural crops (except ornamentals). Springer, BerlinCrossRefGoogle Scholar
  22. Hanif F, Singh DK (2012) Molluscicidal activity of Morus nigra against the fresh water snail Lymnaea acuminate. J Biol Earth Sci 2:B54–B62Google Scholar
  23. Heo SI, Jin YS, Jung MJ, Wang MH (2007) Antidiabetic properties of 2,5-dihydroxy-4,3’-Di(β-d-glucopyranosyloxy)- trans-stilbene from mulberry (Morus bombycis Koidzumi) root in streptozotocin-induced diabetic rats. J Med Food 10(4):602–607CrossRefPubMedGoogle Scholar
  24. Hojjatpanah G, Fazaeli M, Emam-Djomeh Z (2011) Effects of heating method and conditions on the quality attributes of black mulberry (Morus nigra ) juice concentrate. Int J Food Sci Technol 46(5):956–962CrossRefGoogle Scholar
  25. Hussain F, Rana Z, Shafique H, Malik A, Hussain Z (2017) Phytopharmacological potential of different species of Morus alba and their bioactive phytochemicals: a review. Asian Pac J Trop Biomed 7(10):950–956CrossRefGoogle Scholar
  26. Huxley A, Taylor W (1989) Flowers of Greece and the Aegean. Hogarth Press, London, p 185Google Scholar
  27. Imran M, Khan H, Mohibullah S, Khan R, Khan F (2010) Chemical composition and antioxidant activity of certain Morus species. J Zhejiang Univ Sci B 11(12):973–980CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jiang Y, Nie WJ (2015) Chemical properties in fruits of mulberry species from the Xinjiang province of China. Food Chem 174:460–466CrossRefPubMedGoogle Scholar
  29. Jin YS, Lee MJ, Han W, Heo SI, Sohn SI, Wang MH (2006) Antioxidant effects and hepatoprotective activity of 2,5-dihydroxy-4,3′-di (β-d-glucopyranosyloxy)- trans -stilbene from Morus bombycis Koidzumi roots on CCl 4 -induced liver damage. Free Radic Res 40:986–992CrossRefPubMedGoogle Scholar
  30. Jin YS, Kim MK, Heo SI, Han W, Wang MH (2007) Identification and properties of 2,5-Dihydroxy-4,3′-di(β-d-glucopyranosyloxy)-trans-stilbene from Morus bombycis Koidzumi roots. Phytother Res 21:605–608CrossRefPubMedGoogle Scholar
  31. Kang S, Kim EO, Kim SH, Lee JH, Seokahn K, Yun M, Lee SG (2017) Morusin induces apoptosis by regulating expression of Bax and Survivin in human breast cancer cells. Oncol Lett 13:4558–4562CrossRefPubMedPubMedCentralGoogle Scholar
  32. Khare CP (2010) Indian medicinal plants, an illustrated dictionary. Springer, Berlin, p 423Google Scholar
  33. Kim C, Kim JH, Oh EY, Nam D, Lee SG, Lee J, Kim SH, Shim BS, Ahm KS (2016) Blockage of STAT3 signaling pathway by Morusin induces apoptosis and inhibits invasion in human pancreactic tumor cells. Pancreas 45(3):409–419CrossRefPubMedGoogle Scholar
  34. Klaunig JE, Wang Z, Pu X, Zhou S (2011) Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol 254:86–99CrossRefPubMedGoogle Scholar
  35. Ko HH, Wang JJ, Lin HC, Wang JP, Lin CN (1999) Chemistry and biological activities of constituents from Morus australis. Biochem Biophys Acta 1428:293–299CrossRefPubMedGoogle Scholar
  36. Kone WM, Atindehou KK, Terrox C, Hostettmann K, TraoreD Dosso M (2004) Traditional medicine in north Cote-d’Ivoire: screening of 50 medicinal plants for antibacterial activity. J Ethnopharmacol 93:43–49CrossRefPubMedGoogle Scholar
  37. Kotecha R, Takami A, Espinoza JL (2016) Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget 7:52517–52529CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lee JC, Won SJ, Chao CL, Wu FL, Liu HS, Ling P, Lin CN, Su CL (2008) Morusin indusis apoptosis and suppresses NF-KappaB activity in human colorectal cancer HT-29 cells. Biochem Biophys Res Commun 372(1):236–242CrossRefPubMedGoogle Scholar
  39. Leonti M, Staub PO, Cabras S, Castellanos ME, Casu L (2015) From cumulative cultural transmission to evidence-based medicine: evolution of medicinal plant knowledge in southern Italy. Front Pharmacol 6:207CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lev E (2002) Reconstructed materia medica of the medieval and ottoman al-sham. J Ethnopharmacol 20:167–179CrossRefGoogle Scholar
  41. Li H, Wang Q, Dong L, Liu C, Sun Z, Gao L, Wang X (2015) Morusin suppresses breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis. J Exp Clin Cancer Res 4(34):137CrossRefGoogle Scholar
  42. Lim TK (2012) Edible medicinal and non-medicinal plants, fruits, vol 3. Springer, DordrechtCrossRefGoogle Scholar
  43. Lin WA, Lai DY, Lee YJ, Chen NF, Tseng TH (2015) Antitumor progression potential of Morusin suppressing STAT3 and NFkB in human hepatoma SK-Hep1 cells. Toxicol Lett 232:490–498CrossRefPubMedGoogle Scholar
  44. Lotito SB, Zhang WJ, Yang CS, Crozier A, Frei B (2011) Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties. Free Radic Biol Med 51(2):454–463CrossRefPubMedPubMedCentralGoogle Scholar
  45. Manach C, Morand C, Demigne C, Texier O, Regerat F, Remesy C (1997) Bioavailability of rutin and quercetin in rats. FEBS Lett 409:12–16CrossRefPubMedGoogle Scholar
  46. Mascarello A, Mori M, Chiaradia-Delatorre LD, Menegatti ACO, Monache FD, Ferrari F, Yunes RA, Nunes RJ, Terenzi H, Botta B, Botta M (2013) Discovery of Mycobacterium tuberculosis protein tyrosine phosphatase B (PtpB) inhibitors from natural products. PLoS ONE 8(10):e77081CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mascarello A, Chiaradia-Delatorre LD, Mori M, Terenzi H, Botta B (2016) Mycobacterium tuberculosis-secreted tyrosine phosphatases as targets against tuberculosis: exploring natural sources in searching for new drugs. Curr Pharm Des 22(12):1561–1569CrossRefPubMedGoogle Scholar
  48. Mascarello A, Orbem Menegatti AC, Calcaterra A, Martins PGA, Chiaradia-Delatorre LD, D’Acquarica I, Ferrari F, Pau V, Sanna A, De Logu A, Botta B, Terenzi H, Mori M (2018) Naturally occurring Diels–Alder-type adducts from Morus nigra as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Eur J Med Chem 144:277–288CrossRefPubMedGoogle Scholar
  49. Mazimba O, Majinda RRT, Motlhanka D (2011) Antioxidant and antibacterial constituents from Morus nigra. Afr J Pharm Pharmacol 5(6):751–754CrossRefGoogle Scholar
  50. Mohiuddin E, Khan U, Akram M, Asif HM, Akhtar N, Shah PA, Uzair M (2011) Morus nigra-L.A. J Med Plants Res 5(20):5197–5199Google Scholar
  51. Naderi GA, Asgary S, Sarraf-Zadegan N (2004) Antioxidant activity of three extracts of Morus nigra. Phytother Res 18(5):365–369CrossRefPubMedGoogle Scholar
  52. Nguyen TD, Jin X, Lee K, Hong YS, Kim YH, Lee JJ (2009) Hypoxiainducible factor-1 inhibitory benzofurans and chalcone-derived Dielse–Alder adduct from Morus species. J Nat Prod 72:39–43CrossRefGoogle Scholar
  53. Nomura T (1988) Phenolic compounds of the mulberry tree and related plants. Fortschr Chem Org Naturst 53:87–201PubMedGoogle Scholar
  54. Nomura T, Hano Y (1994) Isoprenoid-substituted phenolic compounds of moraceous plants. Nat Prod Rep 11:205–218CrossRefPubMedGoogle Scholar
  55. Oh H, Ko EK, Jun JY, Oh MH, Park SU, Kang KH, Lee HS, Kim YC (2002) Hepatoprotective and free radical scavenging activities of Prenylflavonoids, Coumarin, and Stilbene from Morus alba. Planta Med 68:932–934CrossRefPubMedGoogle Scholar
  56. Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestree database: a tree reference and selection guide, version 4. World Agroforestry Centre, KenyaGoogle Scholar
  57. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2(5):270–278CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pérez-Gregorio MR, Regueiro J, Alonso-González E, Pastrana-Castro LM, Simal-Gandara J (2011) Influence of alcoholic fermentation process on antioxidant activity and phenolic levels from mulberries (Morus nigra L.). LWT-Food Sci Technol 44(8):1793–1801CrossRefGoogle Scholar
  59. Pharmacopoeia Committee of P. R. China (2010) Pharmacopoeia of People’s Republic of China. Chemical Industry Publishers, BeijingGoogle Scholar
  60. Pliny the Elder (2015) Delphi complete work of Pliny the Elder (Illustrated), version 1. Delphi ClassicsGoogle Scholar
  61. Radojkovic M, Zekovic Z, Maskovic P, Vidovic S, Mandic A, Misan A, Durovic S (2016) Biological activities and chemical composition of Morus leaves extracts obtained by maceration and supercritical fluid extraction. J Supercrit Fluids 117:50–58CrossRefGoogle Scholar
  62. Ribeiro RV, Bieski IGC, Balogun SO, Martins DTO (2017) Ethnobotanical study of medicinal plants used by Ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. J Ethnopharmacol 205:69–102CrossRefPubMedGoogle Scholar
  63. Rothwell JA, Urpi-Sarda M, Boto-Ordoñez M, Llorach R, Farran-Codina A, Barupal DK, Neveu V, Manach C, Andres-Lacueva C, Scalbert A (2016) Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database. Mol Nutr Food Res 60:203–211Google Scholar
  64. Saeidnia S, Abdollahi M (2013) Antioxidants: friends or foe in prevention and treatment of cancer: the debate of the century. Toxicol Appl Pharmacol 1:49–63CrossRefGoogle Scholar
  65. Sharma R, Sharma A, Shono T, Takasugi M, Shirata A, Fujimura T, Machii H (2001) Mulberry moracins: scavengers of UV stress-generated free radicals. Biosci Biotechnol Biochem 65:1402–1405CrossRefPubMedGoogle Scholar
  66. Shekhani MT, Jayanthy AS, Maddodi N, Setaluri V (2013) Cancer stem cells and tumor transdifferentiation: implications for novel therapeutic strategies. Am J Stem Cells 2(1):52–61PubMedPubMedCentralGoogle Scholar
  67. Simonetti G, Brasili E, D′Auria FD, Corpolongo S, Ferrari F, Pasqua G, Valletta A (2017) Prenylated flavonoids and total extracts from Morus nigra L. root bark inhibit in vitro growth of plant pathogenic fungi. Plant Biosyst 151(5):783–787CrossRefGoogle Scholar
  68. Tan YX, Liu C, Chen RY (2008) 2-Arylbenzofuran derivatives from Morus wittiorum. Acta Pharm Sinica 43:1119–1122Google Scholar
  69. Turgut NH, Mert DG, Kara H, Egilmez HR, Arslanbas E, Tepe B, Gungor H, Yilmaz N, Tuncel NB (2016) Effect of black mulberry (Morus nigra) extract treatment on cognitive impairment and oxidative stress status of d-galactose-induced aging mice. Pharm Biol 54(6):1052–1064CrossRefPubMedGoogle Scholar
  70. Venkatesh KP, Chauhan S (2008) Mulberry: life enhancer. J Med Plant Res 2:271–278Google Scholar
  71. Vivarelli L, Alvisi S (1934) An historical note on the mulberry species M. nigra and M. alba. Italia Agricola 71:187–193Google Scholar
  72. Volpatoa GT, Calderona IMP, Sinzatoa S, Campos KE, RudgeMV Damasceno DC (2011) Effect of Morus nigra aqueous extract treatment on the maternal–fetal outcome, oxidative stress status and lipid profile of streptozotocin-induced diabetic rats. J Ethnopharmacol 138:691–696CrossRefGoogle Scholar
  73. Wan LZ, MA B, Zheng YQ (2014) Preparation of morusin from Ramulus mori and its effects on mice with transplanted H22 hepatocarcinoma. BioFactors 40(6):636–645CrossRefPubMedGoogle Scholar
  74. Wang L, Wang HQ, Chen RY (2007) Studies on chemical constituents from bark of Morus nigra. Zhongguo Zhong Yao Za Zhi 32(23):2497–2499PubMedGoogle Scholar
  75. Wang L, Xi-Qiang C, Gong T (2008) Three new compounds of the barks of Morus nigra. J Asian Nat Prod Res 10(9–10):897–902CrossRefPubMedGoogle Scholar
  76. Wang L, Gong T, Chen RY (2009) Two new prenylflavonoids from Morus nigra L. Chin Chem Lett 20(12):1469–1471CrossRefGoogle Scholar
  77. Wang L, Yang Y, Liu C, Chen RY (2010) Three new compounds from Morus nigra L. J Asian Nat Prod Res 12(6):431–437CrossRefPubMedGoogle Scholar
  78. Wang L, Guo H, Yang L, Dong L, Lin C, Zhang J, Lin P, Wang X (2013) Morusin inhibits human cervical cancer stem cell growth and migration through attenuation of NF-jB activity and apoptosis induction. Mol Cell Biochem 379:7–18CrossRefPubMedGoogle Scholar
  79. Wang F, Zhang D, Mao J, Ke XX, Zhang R, Yin C, Gao N, Cui H (2017) Morusin inhibits cell proliferation and tumor growth by down regulating c-Myc in human gastric cancer. Oncotarget 8(34):57187–57200PubMedPubMedCentralGoogle Scholar
  80. Wei H, Zhu JJ, Liu XQ, Feng WH, Wang ZM, Yan LH (2016) Review of bioactive compounds from root barks of Morus plants (Sang Bai Pi) and their pharmacological effects. Cogent Chem 2:1212320CrossRefGoogle Scholar
  81. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea-A paradigm shift. Cancer Res 66(4):1883–1890CrossRefPubMedGoogle Scholar
  82. Yaun Q, Zhao L (2017) The Mulberry (Morus alba L.) fruit—A review of characteristic components and health benefits. J Agric Food Chem 65(48):10383–10394CrossRefGoogle Scholar
  83. Zelova H, Hanakova Z, Cermakova Z, Smejkal K, Dall AS, Babula P, Cvacka J, Hosek J (2014) Evaluation of anti-inflammatory activity of prenylated substances isolated from Morus alba and Morus nigra. J Nat Prod 77(6):1297–1303CrossRefPubMedGoogle Scholar
  84. Zheng ZP, Cheng KW, Zhu Q, Wang XC, Lin ZX, Wang M (2010) Tyrosinase inhibitory constituents from the roots of Morus nigra: a structure–activity relationship study. J Agric Food Chem 58:5368–5373CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Zoofishan Zoofishan
    • 1
  • Judit Hohmann
    • 1
    • 2
  • Attila Hunyadi
    • 1
    • 2
  1. 1.Faculty of Pharmacy, Institute of PharmacognosyUniversity of SzegedSzegedHungary
  2. 2.Interdisciplinary Centre of Natural ProductsUniversity of SzegedSzegedHungary

Personalised recommendations